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Abstract
The neural basis of spontaneous movement generation is a fascinating open question. Long-term monitoring of fish,
swimming freely in a constant sensory environment, has revealed a sequence of behavioral states that alternate randomly
and spontaneously between periods of activity and inactivity. We show that key dynamical features of this sequence are
captured by a 1-D diffusion process evolving in a nonlinear double well energy landscape, in which a slow variable
modulates the relative depth of the wells. This combination of stochasticity, nonlinearity, and nonstationary forcing correctly
captures the vastly different timescales of fluctuations observed in the data (�1 to �1000 s), and yields long-tailed residence
time distributions (RTDs) also consistent with the data. In fact, our model provides a simple mechanism for the emergence
of long-tailed distributions in spontaneous animal behavior. We interpret the stochastic variable of this dynamical model as
a decision-like variable that, upon reaching a threshold, triggers the transition between states. Our main finding is thus the
identification of a threshold crossing process as the mechanism governing spontaneous movement initiation and termina-
tion, and to infer the presence of underlying nonstationary agents. Another important outcome of our work is a dimensionality
reduction scheme that allows similar segments of data to be grouped together. This is done by first extracting geometrical
features in the dataset and then applying principal component analysis over the feature space. Our study is novel in its ability
to model nonstationary behavioral data over a wide range of timescales.
Key words: behavioral state transitions; bistability; computer simulations; electric fish; spontaneous move-
ment; stochastic differential equation

Introduction
The ability to spontaneously initiate and terminate

movement is a trait shared across the animal kingdom

(Kramer and McLaughlin, 2001; Maye et al., 2007; Kagaya
and Takahata, 2010; Bazazi et al., 2012; Proekt et al.,
2012). More generally, animals can transition spontane-
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Significance Statement

Animals have the ability to initiate and terminate movement spontaneously. Given an animal moving freely
in a constant sensory environment, one might expect to observe trivial behavior. Instead, spontaneous
behavior is highly random and consists of a sequence of transitions between behavioral states. Identifying
the intrinsic drivers of these transitions is necessary to understand more complex behaviors, and compu-
tational models are well suited to investigate the high-level processes governing the transitions. Here, we
adopt a modeling approach where the neural activity that controls movement is reduced to an effective,
low-dimensional process driven by noise and evolving in a nonlinear potential landscape. We show the
validity of this approach in the context of spontaneous movement initiation and termination in electric fish.
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ously and randomly through an intricate array of behav-
ioral states, even when their sensory environment is kept
constant (Berman et al., 2014). This exemplifies how the
complexity of natural animal behavior not only stems from
interactions with the environment but also from an inter-
nally generated behavioral template. Yet, it is unknown
what neural mechanisms trigger these behavioral state
transitions and how randomness emerges in spontaneous
behavior. Studies where animals are relieved of sensory
stimulation are thus required to isolate and understand
the internal drivers of behavior. This approach has proven
useful for identifying simple principles that underlie seem-
ingly complex behavior (Stephens et al., 2011).

In this article, we apply this approach by considering
behavioral data, published by Jun et al. (2014), from
electric fish swimming freely in an empty arena. While
static stimuli are always present, e.g., the tank walls, the
environment is devoid of any changing sensory stimuli.
Like other animals and insects in these conditions, electric
fish adopt an intermittent locomotion pattern where they
alternate randomly between periods of rest and periods of
activity (inactive and active states, respectively). Such a
binary classification of behavior inevitably oversimplifies
an animal’s larger behavioral repertoire. It does, however,
underline key aspects of the intrinsic variability observed
in animal behavior. Notably, transitions between active
and inactive states seem to occur spontaneously, with the
time spent in each state being highly random despite the
constancy of the sensory environment. These observa-
tions imply the existence of a neural control process that
triggers these transitions and that imparts a high degree
of stochasticity to the behavioral data. Our goal here is to
use the intermittent locomotion observed in electric fish
as a means to probe the dynamical origin of spontaneous
movement generation. Toward this goal, we use the Jun
et al. (2014) data to constrain a low-dimensional, non-
linear stochastic model for the inferred neural control
process.

More specifically, our goal is to identify a minimal set of
dynamical components able to explain the core phenom-
enology of these data. We achieve this goal by developing
a model where noisy fluctuations evolve as a diffusion
process in a nonlinear, double well (i.e., bistable) potential
landscape, and where, in addition, a latent, nonstationary
deterministic forcing tilts the potential landscape back
and forth on a slow timescale, thus modulating the rates

of stochastic switching between the wells. This setup
creates three interacting timescales of fluctuations: those
within a single well (order of 1 s), those of the transitions
between the wells (order of 10-100 s), and those of the
latent variable (order 1000 s). Note that the purpose of this
model is not to explain the slowest timescale but, rather,
given this slow forcing, to allow the faster fluctuations to
emerge freely from it. We interpret the stochastic variable
of our dynamical model as a decision-like variable that, on
crossing a threshold, triggers the transition between ac-
tive and inactive states. We hypothesize that the latent
variable represents slow neuromodulation that affect the
animal’s internal states and its propensity to move.

Our study adds to the line of research that aims to
understand complex phenomena with low-dimensional
stochastic models (Friedrich et al., 2011). In neuroscience,
such a top-down approach has been applied to model
spontaneous activity in a variety of settings (Jens Prus-
seit, 2007; Curto et al., 2009; Deco et al., 2009; Lamour-
oux and Lehnertz, 2009; Mejias et al., 2010; Hindriks et al.,
2011a,b). All these studies, including the present article,
have the advantage of being data driven and thus require
very little assumptions on the underlying biophysics. De-
spite the simplicity of these models, they provide powerful
tools for understanding the dynamical principles that gov-
ern neural processes. Our article goes a step further in
that we have developed a method to handle and model
nonstationary data over long timescales.

Our main conclusion is to identify a stochastic threshold
crossing process as the neural mechanism underlying the
onset and offset of spontaneous movement in electric
fish. In addition, we infer the existence of slow modulatory
agents that impose a variable bias in the switching dy-
namics. The main value of our contribution is to show the
applicability of a low-dimensional dynamical framework to
model spontaneous natural behavior even over long pe-
riods of time where nonstationarity is involved.

Materials and Methods
In the following, second-level subsections show the

main methods and results, while third-level subsections
contain the finer details and more technical information.

Intermittency data
Intermittent locomotion, or intermittency, has been

studied extensively by biologists and ecologists (Kramer
and McLaughlin, 2001). These studies, however, entail
monitoring unconstrained animals over long periods of
time to obtain proper statistics on the movement patterns.
Such experimental conditions hinder the acquisition of the
concomitant neural activity, preventing any conclusions
to be drawn with respect to the neural correlates of spon-
taneous movement. On the other hand, neuroscientists
have obtained and analyzed neural data pertaining to
self-initiated actions but only in the context of task-
oriented experiments and only over short timescales
(Libet et al., 1983; Schurger et al., 2012; Murakami et al.,
2014). These experimental paradigms, therefore, do not
exactly probe natural, intrinsic animal behavior.

This highlights the existence of a trade-off between
observing unconstrained, freely behaving animals over
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timescales long enough to characterize natural intermit-
tent behaviors, and acquiring continuous neural data re-
quired to uncover the neural basis of these behaviors. The
electric fish data that we use here allow us to circumvent
this problem by simultaneously providing access to a
movement variable and to a proxy for high-level neural
activity, namely the active sensing rate of the fish, known
as the electric organ discharge rate (EODR). Both of these
variables can be continuously and noninvasively recorded
over long timescales (4.5-12 h). Over this period, the
EODR creates a complex, bimodal time series that corre-
lates strongly with the movement variable (Fig. 1) and that
carries information on neural activity descending from the
higher brain centers (Wong, 1997; Giassi et al., 2012a). An
adequate model for the EODR would thus give us the
ability to characterize, on a phenomenological level, the
neural control process underlying spontaneous move-
ment initiation and termination in naturally behaving fish.

The modeling presented in this article is based on data
published by Jun et al. (2014). In the next section, we
briefly describe the principles of electroreception in elec-
tric fish and then turn to the experimental paradigm and
key results of the Jun et al. (2014) experiments.

Electric fish
Electric fish possess an excitable organ, the electric

organ, distributed along the length of their body that can
generate an electric field around them. The spatial and
temporal characteristics of this electric field depend on
the specific type of fish under consideration (Bullock
et al., 2005). Jun et al. (2014) used fish of the Gymnotus
genus, which are classified as pulse-type due to the
discrete nature and to the briefness of their EOD. Each
pulse creates a transient, dipolar-like electric field that can
be detected by the fish through electroreceptors distrib-
uted on its skin. In the absence of surrounding objects or

perturbations, each pulse creates a stereotyped spatio-
temporal pattern of voltage differences on the fish’s skin.
This pattern is stored to memory and compared with
those associated with EODs generated during normal
behavior (Caputi et al., 2003). When objects are within a
fish’s sensing volume, they cause deviations from this
stored pattern, providing information on the type, size,
and location of the object. EODs thus represent discrete
sensory sampling events that allow fish to instantaneously
probe their environment. This allows fish to e.g., localize
and identify preys and conspecifics, as well as to navi-
gate.

As EOD pulses are emitted in quick succession, it is
often useful to consider the EODR, which provides a
measure of the fish’s current level of electrosensory sam-
pling. A high EODR corresponds to a period of heightened
active sensing where the fish densely collects sensory
information. Pulses are emitted at a baseline mean rate
that can be modulated either spontaneously, or in re-
sponse to sensory experiences. This baseline rate is es-
tablished by a hindbrain pacemaker that receives input
from diencephalic and medullary prepacemaker nuclei. In
addition, there is evidence indicating that the EODR is
strongly modulated by forebrain activity (Jun et al., 2014).

Experiments
Experiments were conducted in a featureless, circular

tank surrounded by a sensory-isolation chamber that
blocked external sounds, lights, and vibrations. The only
stimuli available were static: the walls and floor of the
tank. Animals were kept on a 12 h light cycle, and record-
ings were made in the dark, during the active part of the
fish’s circadian rhythm. Fish were monitored, unstimu-
lated, for long recording sessions (4.5-12 h) while EODs
were noninvasively recorded by an array of electrodes
located on the periphery of the tank (Jun et al., 2012; Jun

Figure 1. The EODR forms a complex, bimodally distributed time series that is highly correlated with movement. Blue traces show the
EODR for Fish A, while the red and green binary traces show the movement variable, processed by a transition detection scheme (see
Materials and Methods, Transition detection). To allow comparison between individuals, the EODR has been rescaled as in Jun et al.
(2014), making it unitless. Insets show three examples of active states and thus reveal the diversity of activity time courses in such
states.
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and Longtin, 2014). The number of recording sessions
varied across fish. For each session, the EODR time series
were obtained by smoothing the instantaneous pulse rate
followed by a rescaling to allow comparison across indi-
viduals (all EODR traces shown here are thus unitless).
The rescaling mapped the median EODR values during
inactive and active states to 0 and 1, respectively. The
time series from each sessions were then stitched to-
gether to obtain what we refer to as the pooled EODR time
series.

To avoid the need for large data storage space, the
movement levels of fish were obtained directly from the
recorded EODs rather than from video recordings (Jun
et al., 2012; Jun and Longtin, 2014). Movement informa-
tion is conveyed by the EOD amplitudes at the different
recording electrodes. Jun et al. (2014) showed that fluc-
tuations of these amplitudes correlate with fish movement
and can thus be converted into a movement variable. This
experimental paradigm was applied to five fish of un-
known sex for a total of 207 h of recording. For the
analyses and modeling conducted in this article, we
showcase only two of these fish, which we refer to as Fish
A and Fish B. To show the general applicability of the
model that we propose below, we choose these fish
because they differ the most in terms of their behavioral
data and thus span the largest range of behavioral types.
Fish A (seven recording sessions) is an older fish that
spent most of its time in the inactive state, while Fish B
(eight recording sessions) is younger and much more
active, with more transitions between active and inactive
states. The data from the three other fish not analyzed
here are qualitatively similar to those of Fish B. These fish
would thus be modeled in the same way as Fish B.

These experiments revealed a strong correlation be-
tween the movement variable and the EODR: movement
onset is always concomitant with a significant increases
of the EODR. Moreover, the EODR tends to adopt two
preferred values, as shown by the EODR histogram (Fig.
1), with increased fluctuations associated with the ele-
vated value. By visual inspection of the EODR time series,
one sees that its evolution resembles diffusional trajecto-
ries around two stable states, interrupted by sharp tran-
sitions between these states. This observation provides
the foundation of the model presented below.

The fact that the EODR is bimodally distributed and that
the elevated EODR value is coupled to movement allows
for the definition of two behavioral attractor states, namely
the active and inactive states mentioned above. In the
case of these fish, active states are thus periods of move-
ment with an elevated active sensing rate, and the tran-
sition from inactive-to-active state is concomitant with
movement onset. In addition, Jun et al. (2014) report a
delayed correlation on a shorter timescale, with an up-
ward transition in EODR preceding that in movement by
1-4 s. Note that this preparatory ramp-up of the EODR is
not meant to be captured by the model presented here.
These observations lead to the hypothesis that a single
neural control process is responsible for coupling the
EODR to movement and, importantly, for triggering tran-
sitions between the behavioral attractor states (Jun et al.,

2014). Because increases in EODR must be due to in-
creased neural activity of neurons providing descending
input to the pacemaker nucleus, information on the neural
control process must be contained in the EODR time
series. Our modeling approach and interpretations are
predicated on exploiting the information content of this
time series.

Data analysis
We now turn to the details of the data analysis scheme

that we develop to further probe the Jun et al. (2014) data.
This is followed by the derivation and applications of the
nonlinear stochastic model we propose for these data.

By visually inspecting the EODR time series, one can
observe that the active states are not all alike (Fig. 1,
insets). Not only do they span three orders of magnitude
in terms of duration (10-1000 s approximately), but they
also cover a range of different shapes; this is particularly
striking in the case of Fish A. For instance, there is vari-
ability in the height of the jump around inactive-to-active
transitions, which we refer to as the transition amplitude.
In addition, active states show, with a varying degree, a
slow tail-like decay after movement offset. We implicitly
assume that if active states have similar geometrical at-
tributes, i.e., if they “look” the same, then they are prob-
ably generated by similar neural dynamics. However, the
aforementioned variability in the shape of active states
leads us to hypothesize that they are not all generated by
the same underlying dynamical template. To appropriately
study the EODR time series, it is then necessary to group
similar active states together, so as to avoid erroneously
comparing states that are potentially of different neural
origin, i.e., active states where the associated neural con-
trol process operates in a different dynamical regime.

To achieve this goal, we develop a dimensionality re-
duction scheme, similar in principle to spike sorting
(Lewicki, 1998), where active states are sorted with re-
spect to their geometrical similarities using principle com-
ponents analysis (PCA). Although it is possible to apply
PCA directly to the active state traces, we achieve better
separation and grouping by instead quantifying active
states with a small number of geometrical features, and
then applying PCA on this feature space. The first step
consists of breaking the EODR time series in a sequence
of active and inactive states. To do so, the movement time
series is piped through a transition detection scheme that
assigns a time stamp to each transition (see Transition
detection below). An active state is then defined as a
segment of the EODR time series located between a
movement onset time and a movement offset time.

The second step consists of assigning a set of geomet-
rical features for each active state (see Figure 2). Based
on preliminary exploration of the data, we choose five
such features, referred to as f1 to f5: the transition ampli-
tude, the duration of the state, the average EODR during
the state, the variance of the EODR during the state, and
the duration of the decaying tail after movement offset.
Although one might expect the transition amplitude (f1)
and the average EODR (f3) to be equal, they in fact often

New Research 4 of 21

March/April 2017, 4(2) e0355-16.2017 eNeuro.org



differ. These specific features are chosen because they
show significant variability across active states. Also re-
call that, although the EODR has been rescaled to show
transitions between 0 and 1, this rescaling does not re-
move the variability observed in f3: to achieve this rescal-
ing, we first obtain the median EODR for all inactive states
combined, and for all active states combined, then it is
these median values that are mapped to 0 and 1. The
result is a rescaled EODR, the fluctuations of which yield
median values in the inactive and active states of 0 and 1.
The individual active states, however, still show an aver-
age value that varies around 1.

With each active state represented by five coordinates,
the entire time series can be visualized as a cluster of
points in 5-D space, each point representing a single
active state (Fig. 3A). This process reveals some unex-
pected correlations between all of the defined features.

For instance, the transition amplitude (f1) correlates pos-
itively with the duration of the state (f2; see Results,
Onset-triggered analysis) and with the duration of the
decaying tail after movement offset (f5). This suggest that
the structure and the duration of the active state is, to
some extent, predetermined right from the onset. This
hints at an underlying factor controlling the active states,
i.e., that they are not realized from purely random pro-
cesses. A positive correlation is also observed between
the mean (f3) and variance (f4) of the EODR during active
states. Assuming a common cause for these correlations,
we apply PCA on this 5-D cluster of points in the hope of
extracting some new variables (i.e., the first few principle
components) along which the active states would be
sorted according to their geometrical similarities. We find
that, in fact, the first principle component (PC1) by itself
fulfils this role satisfactorily. Although this type of sorting
scheme usually leads to a search for clusters, as for spike
sorting for instance, no such clusters are to be found in
our case. Instead, active states are distributed continu-
ously along the PC1 axis (Fig. 3B). What we observe,
however, is that active states that are neighbors along this
axis do look similar to one another, which is the main
reason why this approach is useful here.

Indeed, this observation provides us with a tool to
visualize and analyze the data in a new way: we can now
easily plot the traces of several similar-looking active
states on top of each other, and do so for the many
different shapes of active states that populate the dataset.
We do this by grouping together active states that are
neighbors along the PC1 axis, each group centered on a
different location on this axis (Fig. 3B). As there are no real
boundaries between the active states in PC space, the
number of groups we choose to define is arbitrary. Yet,
we find that defining five distinct groups is enough to
adequately sample the spectrum of different active state
shapes found along the PC1 axis. We also find that having
20 active states per group is large enough to calculate
representative average traces, yet few enough such as to
avoid grouping differently shaped states together (Fig. 4).

Figure 2. Active states are characterized by five geometrical
features, f1 to f5 (see Materials and Methods, Active state fea-
tures) that allow the dimensionality of the EODR time series (blue
trace) to be reduced. ton and toff are the movement onset and
offset times, respectively.

A B

Figure 3. Correlations between features are revealed once the dataset is cast onto feature space. This makes PCA useful for
segregating states of similar shape. A, 5-D scatter plot of the active state features from Fish A. Each point corresponds to a single
active state. The size of the points represent feature 4, and the colours, feature 5. B, Same scatter as in A but projected onto the plane
of the first two principle components. Again, each point (black and coloured) represents an active state, and colours are only added
for visual representation of the different groups (colours are unrelated to those in A).
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Note that, for Fish B, although the active states of groups
1-4 look similar to one another, they do indeed differ
significantly in terms of their total duration and decay
duration (which is not shown in Figure 4 since the traces
are aligned with respect to movement onset). This simi-
larity is largely explained by the fact that, as opposed to
Fish A, the transition amplitude does not vary consistently
across groups. By inspecting the left panel of Figure 4
more closely, one might also notice that the slope of the
average EODR varies across groups. This means that this
slope could also have been used as a geometric feature
defining each active state. However, due to the high level
of fluctuations in the active state, rigorously extracting this
value for individual traces is problematic, and therefore,
this slope was not considered in the feature space.

In summary, each group represents a stereotypical
shape of active state that is found all across the dataset.
For instance, for Fish A, group 1 consists of states with
high values for the PC1, which corresponds to those
states with long durations, long decaying tails, and higher
mean values for the EODR. States that belong to group 5,
on the other hand, have low PC1 values and have short
durations with low transition amplitudes. Moreover, be-
cause all active states possess time stamps for move-
ment onset and offset times, we have the freedom to
analyze the groups by aligning their states with respect to
either of these times. In Figure 4, for instance, the move-
ment onset time was used as reference to align the active
states. Note that, since active states within a group have
slightly different durations, aligning them with respect to

Figure 4. The EODR time series is populated by a heterogeneous set of active state shapes. The left panels show active states that
belong to the five groups identified in Figure 3B, all aligned with respect to the movement onset time (dashed vertical lines). The black
traces are group averages. The groups of Fish B are extracted in exactly the same way as for Fish A.
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movement onset causes a de-synchronization around the
movement offset time, i.e., the active states do not all
drop off at the same time. The ability to extract and group
similar active states together is essential for the modeling
conducted in this article. In addition, this analysis pipeline
could be applied to other types of time series and con-
stitute a useful approach to identify and handle suspected
nonstationary elements in stochastic data.

Transition detection
To assign a time stamp to movement onset and offset

times, we start by compiling the histogram for the move-
ment variable, which appears unambiguously bimodal,
and then obtain the values for the local minimum as well
as the two adjacent local maxima. To remove undesired
rapid fluctuations in the movement variable, we smooth it
with a moving average filter (window size, 1 s) and obtain
the transition times from this filtered time series. Applying
the principles of the Schmidt trigger (Fauve and Heslot,
1983), we choose the two halfway points between the
local minimum and the local maxima as two distinct
thresholds for detecting either movement onset or offset.
An upward crossing of the upper threshold is registered
as a movement onset transition, and a downward cross-
ing of the lower threshold as a movement offset time.

Active state features
Here, are the details on how we define and calculate the

five features used to characterize the shape of active
states:

— Transition amplitude, f1. Given an inactive-to-
active transition, we define two time windows, one
after and one prior to the transition, both with a
duration of 30 s. The transition amplitude is calcu-
lated as the difference between the average EODR
within these two time windows. Note that the last 5 s
of the first time window are neglected due to the
presence of a short (�5 s) preparatory increase of the
EODR prior to the transition.
— State duration, f2. Calculated as the difference
between the movement offset and movement onset
times.
— Average EODR, f3. Given by the average of the
EODR over the duration of the active state.
— Variance of the EODR, f4. Given by the variance of
the detrended EODR over the duration of the active
state. Detrending (Matlab’s “detrend” function) is
necessary since some active states show a slight
downward trend.
— Decay duration, f5. Given an active-to-inactive
transition, the decay duration is calculated as the
time taken for the EODR to decay back to its baseline
value, as calculated by the same averaging time win-
dow used for f1, prior to the movement onset.

Once PCA is performed on this feature space, we ob-
tain the following eigenvector for the PC1: for Fish A,
PC1 � 0.47f̂1 � 0.42f̂2 � 0.40f̂3 � 0.50f̂4 � 0.41f̂5, for Fish
B, PC1 � 0.28f̂1 � 0.61f̂2 � 0.63f̂3 � 0.36f̂4 � 0.12f̂5,
where f̂i represents the unit vector for the associated axis.

State segregation and group definition
Once the active states have been discretized into the

five features and transposed onto principle component
space, we use their ordering along the PC1 axis to define
groups of neighboring states that are of similar shape.
Groups 1 and 5 comprise the 20 states with the highest
and lowest PC1 value, respectively, while the 20 states
that belong to groups 2, 3, and 4 are located above
specific relative values of the PC1: 4/5, 3/5, and 1/6 of the
maximum PC1 value, respectively. Those values were
chosen to adequately showcase the full range of different
shapes that active states adopt in the data.

Derivation of the nonlinear stochastic model
We outline here the details of the nonlinear stochastic

model that we propose to characterize the aforemen-
tioned neural control process. Given the lack of experi-
mental evidence available to biophysically constrain this
process, it would be premature at this point to develop a
detailed neural network model for it. There is rather a
preliminary need to characterize the key dynamical fea-
tures of the data from a phenomenological perspective.
To achieve this, we propose a model with the simplest
combination of dynamical components that most closely
reproduces the statistics of the EODR time series. This
model obeys the following stochastic differential equation:

dx
dt

� �
�U(x, t)

�x
� �2D·�(t) (1)

where x is the simulated EODR, D is the noise intensity,
�(t) is Gaussian white noise with mean zero and autocor-
relation � ��t���t�� � � 	�t � t��, and U(x, t) is a nonsta-
tionary double well potential function that can, depending
on its asymmetry, give rise to bistability between two
stable points separated by an unstable point (Fig. 5). It
adopts the following form:

Figure 5. To account for key aspects of the data, we propose a
dynamical system model consisting of a stochastic variable
evolving in a bistable potential function that is modulated by a
nonstationary, latent variable, s(t). When the tilt parameter, a(t), is
zero, the potential function is symmetrical (dashed function). The
potential function has two stable points: x � 1 represents the
active state, and x � 0 the inactive state. For Fish A, not only
does the potential function tilt back and forth, but the separation
variable, d(t), is also modulated. For Fish B, the only source of
nonstationarity is the tilt variable, a(t).
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U(x, t) � a(t)(x � 0.5) � b(t)(x � 0.5)2 � c(t)(x � 0.5)4

(2)

where an offset of 0.5 is introduced to have the stable
points centered on 0 and 1, thereby matching the format
of the EODR. Although all the parameters in Equation 2
are time dependent, the nonstationarity is in fact mediated
by a single underlying variable, s(t), described below.

The second term in the right-hand side of Equation 1 is
responsible for the stochastic nature of the model. Con-
sidered on its own, this term would generate a noisy,
fluctuating solution, but it would lack any attractor states
(i.e., fixed points). This is why we need the first term on the
right-hand side of Equation 1, which is the deterministic
and nonlinear component of the equation. On its own, and
without nonstationary forcing, this term would establish
two attractor states, i.e., bistability. This would, however,
only yield a trivial solution, namely the decay to the left or
right fixed point attractor, depending on whether the start-
ing point was to the left or the right of the origin, respec-
tively. In theory, and with infinite numerical computing
accuracy, the solution would converge toward one or the
other fixed point indefinitely; in practice, allowing finite
precision, one simply says that the noise-free solution has
reached either fixed point after a finite transient decay
period. Even by adding the nonstationary forcing, the
solution would merely become a binary version of the
forcing, displaying transitions only when the forcing
changes significantly. To display the nontrivial statistics
observed in the data, the model needs the interplay be-
tween the three components: stochasticity, nonlinearity,
and nonstationarity. In that case, the solution can transi-
tion randomly between the two attractor states with a rate
that depends on the shape of the potential function at any
given time.

The interplay between these three model components
is responsible for the existence of a wide range of time-
scales in the solution of the model: the stochastic com-
ponent creates very fast (order of 1 s) fluctuations within a
single well, adding the nonlinear component allows for
switching between wells on the order of 10-100 s, and the
nonstationary forcing slowly modulates the transition
rates between wells on the order of 1000 s.

When a(t) � 0, the potential function is symmetrical and
the remaining parameters, b(t) and c(t), can be expressed
as functions of the shape parameters of this symmetric
double well, namely the depth of the wells with respect to
the unstable point, h, and the separation, d(t), between
the unstable point and either stable points (Fig. 5). The
relations between these parameter sets are b�t� � 2h/
�d�t��2 and c�t� � �h/�d�t��4. When simulating the model
numerically, we use these expressions as a practical way
to specify the shape of the potential function U(x, t): we
first choose a value for h and a time dependency for d(t),
which are then used at every time step to calculate the
canonical parameters b(t) and c(t). These values specify
the symmetric part of U(x, t). Additionally, a time depen-
dency for a(t) is prescribed and superimposed on this
symmetric function, inducing a tilting of U(x, t) and thereby

completing the definition of the deterministic part of
Equation 1, for a given time step.

Based on visual inspection of the data, we choose, for
Fish A, the tilt parameter, a(t), and the separation, d(t), to
be both linearly dependent on a slow, latent variable, s(t),
with a�t� 
 � s�t� and d�t� 
 s�t�, see below, Integration of
the stochastic differential equation for details. This con-
figuration results in a potential function that is tilted to-
ward the active state (x � 1) and has a large separation
between the stable points for high values of s(t). Con-
versely, for low values of s(t), U(x, t) is tilted toward the
inactive state (x � 0) and has a lower separation between
its stable points. Also based on visual inspection of the
data, we keep constant the depth, h, while the separation,
d(t), is constant for Fish B, but remains time-dependent
for Fish A.

We prescribe two different time-dependencies for the
slow variable, s(t), depending on which analysis is being
conducted (for details on how s(t) is specified in both
cases, see below, Estimation of the latent variable). In the
first case, we run Monte Carlo simulations on a short
timescale around active-to-inactive transitions and thus
simply prescribe a linear decay for s(t), which we refer to
as slocal(t). In the second case, simulations are performed
over the timescale of the experiments (several hours),
which warrants a more realistic s(t). To obtain a variable
that could realistically represent the slow driving force that
modulates the potential function, we apply a moving av-
erage filter with a large window to the EODR time series
and we use this filtered trace as s(t). The rationale behind
this method is that a smoothed version of the EODR
contains the desired information on a slow timescale and
thus constitutes a first estimate for the latent variable,
should it exist.

Although this moving average filter will smooth out
abrupt transitions, the simulations driven by this latent
variable will still show transitions as abrupt as in the data,
i.e, on a much faster time scale than the one on which the
latent variable fluctuates. The slower rise or decay of the
latent variable will, however, allow transitions to occur at
a rate that is slowly modulated by this latent variable, as is
observed, for instance, in the data following long active
states.

Also note that by using the experimental data to infer
the latent variable, and then using this latent variable to
drive the model, we inevitably impart some level of cor-
respondence between the data and the model results.
This will, however, only be the case for timescales longer
than the averaging window used to estimate the latent
variable (�2300 s for Fish A, �340 s for Fish B). Hence,
out of the three timescales mentioned above, only the first
two emerge directly from the model. For instance, the
longest active states observed in the data (such as those
shown by the black arrows in Figure 7A) will automatically
be reproduced by the model, since they yield a very high
value for s(t) when averaged out, which in turn allows a
single attractor (namely, the one to the right of the origin)
to exist in the model.

Our modeling framework and our interpretations are
predicated on the following set of assumptions:
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1. The spontaneous decision to initiate or terminate
movement emerges from an open-loop subsystem,
i.e., it is intrinsically generated by a high-level neural
population.

2. The activity of this subsystem can be projected onto
a low-dimensional manifold containing bistable at-
tractor dynamics.

3. Neural noise causes this subsystem to randomly al-
ternate between the two stable modes of activity, or
attractor states.

4. Modulatory agents, e.g., monoamines or peptides,
evolving on a slow timescale, tilt the bistable attractor
landscape back and forth and thus affect the animal’s
propensity to move.

5. Information on the activity of this subsystem is con-
veyed through the EODR. The EODR thus represents
a proxy for the neural activity responsible for trigger-
ing spontaneous transitions between the active and
inactive behavioral states.

Assumption 1 is plausible given that the experiments
were conducted without any external cues, precluding
any sensory-evoked responses. The plausibility of as-
sumptions 2 and 3 can be established in light of the fact
that (1) recurrent networks have been shown to generate
bi- and multistable attractor dynamcis, in a winner-take-
all fashion (Wang, 2002; Martí et al., 2008), (2) it has been
suggested that neural noise can be responsible for trig-
gering transitions between the attractor states (Martí
et al., 2008), and (3) a bistable attractor network model
(Wang, 2002) can be reduced to a 1-D stochastic differ-
ential equation of the same form as Equation 1 (Roxin and
Ledberg, 2008). Furthermore, experiments on zebrafish
have identified a clear link between neuropeptidergic
modulation and arousal behavior (Prober et al., 2006;
Woods et al., 2014), which supports assumption 4. As-
sumption 5 was discussed in the Introduction and is
consistent with previous findings (Wong, 1997; Giassi
et al., 2012a; Jun et al., 2014).

Integration of the stochastic differential equation
To integrate Equation 1, the asymmetry parameter, a(t),

the separation, d(t) (or d �constant for Fish B), the height
h, and the noise intensity, D, need to be specified. Both
a(t) and d(t) are linearly rescaled versions of s(t):

a(t) �
(a2 � a1)

(smax � smin)
·(s(t) � smin) � a1

d(t) �
(d2 � d1)

(smax � smin)
·(s(t) � smin) � d1 (3)

where smax, smin, a1, a2, d1, d2 are the extremum values of
s(t), a(t), and d(t), respectively. Note that smax and smin are
not free parameters, but are rather obtained from the s(t)
time series. Parameter values for both fish are shown in
Table 1. Parameters are obtained sequentially under var-
ious constraints that minimize the differences between
simulations and experimental results. First, d1 and d2 are
chosen to match the minimum and maximum transition
amplitude calculated from the data (Fig. 9, groups 5 and
1, respectively). Note that assigning d1 � d2 for Fish B

yields a constant d(t). Once the separation is fixed, h can
be used to adjust the slope of the potential function
between the stable and unstable point, and therefore
controls the abruptness of the transitions between stable
points. It is chosen such that simulated transitions are as
abrupt as those observed in the data. Transitions from
Fish B are slightly steeper than those of Fish A (Fig. 9),
which is why we obtain a larger depth for the simulations
of Fish B. a1 and a2 are chosen such that the potential
function, in its most asymmetric configurations, allows
states and transitions that are similar to those of the data.
For instance, when s(t) adopts its highest values, the
experimental data for both fish show active states that are
long, with rare instances of brief inactive states (Figs. 7
and 8, top panels). This observation constrains the value
of a2: when a(t) � a2, the potential function must have a
deep active state well along with a shallow inactive state
well. On the other hand, when s(t) adopts its lower values,
this situation is reversed in the case of Fish A, while for
Fish B, the EODR alternates between active and inactive
states, with a bias for the inactive state (Fig. 8, upper
panel). This argues for a potential function that is slightly
more symmetrical than that of Fish A, which is why the
value of a1 is lower for Fish B (recall that a(t) � 0 yields a
symmetrical potential function). The remaining free pa-
rameter, D, controls the switching rate between the stable
points. It is therefore obtained such that the number of
transitions in the simulations matches that seen in the
experimental data over the same period of time, and with
the same s(t). Numerical integration is performed with the
Euler–Maruyama scheme with a time step of 0.01 s.

Estimation of the latent variable
The latent variable, s(t), is responsible for the nonsta-

tionarity imparted to the model, i.e., a constant s(t) would
turn Equation 1 into a stationary stochastic process. De-
pending on which analysis is considered, we prescribe
two different forms for s(t): it is either a slow and stochas-
tic time series evolving over a long timescale, or a linear
decay over a short timescale. The latter is referred to as
slocal(t).

For the longer simulations performed in the Results
section, Onset-triggered analysis and Residence time dis-
tributions (RTDs), the stochastic differential equation (Eq.
1) is integrated over a long period of time where the latent
variable, s(t), is chosen as the moving average filtered
version of the EODR time series (Figs. 7 and 8, black
traces). The window size for the filter is chosen as 4
�� Tact. � � � Tinact. ��, where � Tact. � and � Tinact. �
are the mean residence times of the active and inactive

Table 1: Numerical integration parameters for the models of
both fish

Parameter Fish A Fish B
h �0.08 �0.32
d1 0.3 0.5
d2 0.6 0.5
a1 0.12 0.07
a2 �0.1 �0.1
D 0.02 0.1
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state, respectively. The window size for Fish A is 2997 s,
while for Fish B it is 344 s. The window size is chosen
large enough such that a change in the filtered EODR
implies that the durations of the states undergo a signifi-
cant, sustained deviation from their average values, which
relates to the level of tilt of the potential function. The
window size is also chosen such that s(t) becomes ap-
proximately constant when the true latent variable is con-
stant, i.e., when the process is stationary (as tested with
simulations).

The Monte Carlo simulations performed in Results,
Offset-triggered analysis, on the other hand, are per-
formed over only 1500 s, with a prescribed linear decay
for slocal(t). This represents a potential function, tilted to-
ward the active state at first, that undergoes a tilting
toward the inactive state at a constant rate. This rate, i.e.,
the slope of the linear decay of slocal(t), is chosen as
-0.036. This value is obtained under the constraint that the
transient period of bistability in simulations is as long as
that seen in the data (Fig. 10). A higher tilting rate [i.e., a
steeper slope for slocal(t)] would shorten this bistable pe-
riod, whereas a lower rate would lengthen it. Since the
influence of slocal(t) is mediated only through linearly res-
caled versions of itself, i.e., a(t) and d(t), the y-intercept of
the linear profile is arbitrary.

Results
Below, we present three distinct modeling experiments

aimed at validating our proposed modeling framework.
With the first two experiments, we examine trajectories of
the EODR around the transitions between states. The

third experiment shows how our simulations yield RTDs
consistent with those seen in the data.

Onset-triggered analysis
Here, we examine how the EODR behaves around the

transitions from the inactive to active state, that is, around
the times of movement onset. We first investigate the
correlations between the transition amplitude (f1) and the
active state duration (f2) by projecting the entire feature
cluster of Figure 3A onto the f1 – f2 plane, such as to
generate 2-D scatter plots. Comparing the scatter plots
for both fish (Fig. 6A,C) reveals that, for Fish A, the tran-
sition amplitude covaries with the active state duration
across the dataset, with shorter states having the lowest
amplitude and longer states the greatest. For Fish B,
however, the transitions from inactive to active states
have an amplitude that is uncorrelated with the state
duration.

The unexpected variability in the dynamics of inactive to
active state transitions implies important differences in
neural network dynamics across individuals of the same
species. This discovery invalidates blind across-individual
averaging of behavioral or neural data and, as described
below, requires individual-specific model choices.

To reproduce these results with our stochastic model,
we first integrate Equation 1 for a duration similar to that
of the pooled EODR time series, �60 h. In this case, the
latent variable, s(t), is obtained by applying a moving
average filter to this pooled time series (see Materials and
Methods, Estimation of the latent variable). This method
yields a realistic s(t) that evolves stochastically over a

A B

C D

Figure 6. The model captures the correlation (Fish A), or lack thereof (Fish B), between the transition amplitude (f1, y-axes) and the
duration of the active state (f2, x-axes). Each black dot represents an active state, projected on the f1 – f2 plane. For visual reference,
a least-square line is also shown (straight black lines). The linear correlation coefficient and the p value for each plot are also reported
as r and p, respectively.
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timescale much slower than that of the actual EODR (Figs.
7 and 8, black traces).

For Fish A, in addition to a time-dependent tilt param-
eter, a(t), we also assign a time dependency to the sepa-
ration, d(t), both of which are linearly rescaled versions of
the latent variable, s(t). This configuration creates a
greater separation between the two stable points when
the potential function is tilted toward the active state, and
a smaller separation when it is tilted toward the inactive
state. Note that, by construction, the separation, d(t),
directly controls the transition amplitude. Also, since the
level of tilt of the potential function strongly controls the
durations of the active states (with, e.g., longer active
states occurring when the potential function is tilted to-
ward x � 1), simulations will show a positive correlation
between the transition amplitude and the active state
duration because a(t) and d(t) are both dependent on the
same variable. For Fish B, on the other hand, only a(t) is
dependent on s(t), with d(t) held constant.

These choices are based on the observations, de-
scribed in the previous paragraph, that the transition am-

plitudes correlate with the active state durations for Fish
A, but not for Fish B. It should be noted that, although the
shape parameters, d(t) and h, of the (symmetric) double
well can be held constant, the presence of a varying tilt
parameter, a(t), inevitably causes fluctuations in the actual
well depth and well separation of the potential function.
We found, however, that these fluctuations are not by
themselves able to explain the range of transition ampli-
tudes observed in Fish A, which is why a time-dependent
separation, d(t), was introduced for that case.

The time series obtained from these simulations quali-
tatively match those of the observed EODR (Figs. 7 and 8)
and are processed in exactly the same way as the exper-
imental data, i.e., they are fed through the state segrega-
tion scheme described in Materials and Methods, Data
analysis. In the case of simulations, however, the EODR
variance in the active state, f4, and the decay duration, f5,
remain constant because variability of these features are
not included in the model. Nevertheless, an analysis of
these simulations yields scatter plots for both models that
capture the correlation, or lack thereof, between the tran-

Figure 7. Simulation results from model A (lower panel, blue trace) qualitatively match the data from Fish A (upper panel, blue trace).
This segment of data are taken from the trace in Figure 1. Applying a moving average filter to the observed EODR yields the black
trace, which is then used as the latent variable, s(t), for model A (see Materials and Methods, Estimation of the latent variable). The
black arrows are examples of active states that are expected to be reproduced by the model, since they are longer than the averaging
window used to obtain the s(t).

Figure 8. Simulation results from model B (lower panel, blue trace) qualitatively match the data from Fish B (upper panel, blue trace).
Applying a moving average filter to the observed EODR yields the black trace, which is then used as the latent variable for model B
(see Materials and Methods, Estimation of the latent variable).
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sition amplitude and the active state duration (Fig. 6B,D).
By comparing model results and data in Figure 6, it is
apparent that the observed transition amplitude has a
greater variability than the simulated one. This is likely
caused by the low number of parameters of the potential
function used in our model, which makes it tighter than
the “true” potential function. Adding parameters that
could widen the bottom of the wells would allow for more
variability in the simulated transition amplitudes.

By using the segregation into groups described in Ma-
terials and Methods, Data analysis, we can plot the aver-
age traces for each group, observed and simulated (Fig.
9). We arrive at the same conclusion drawn from Figure 6,
i.e., that Fish A transitions from inactive to active states
with an amplitude that covaries with other attributes of the
active states, as shown by the fact that different groups
have different average transition amplitudes. In contrast,
for Fish B, the transition amplitude is independent of the
group. In addition, Figure 9 shows that the simulated time
series exhibit a similar spectrum of active state shapes as
the data.

From Figures. 4 and 9, one sees that some active states
from the experimental data tend to follow a slow, almost
linear decay toward the inactive state, which contrasts
with the steeper upward transitions toward active states,
see e.g., group 4 of Fish A in Figure 4. The analysis
presented in this section does not attempt to reproduce
this asymmetry, which is why the active states from the
simulations show active-to-inactive transitions that are
more abrupt than those of the data, as seen from the
average traces of groups 4 and 5 (Fig. 9). See Discussion
for potential additions to the model that could capture this
asymmetry. In the next section, however, we show that a
separate analysis, centered specifically around the move-

ment offset times, offers a satisfying fit between simulated
and observed active-to-inactive transitions.

Offset-triggered analysis
We now examine in detail the structure of the EODR

around movement offset times, that is, around active-to-
inactive transition, for active states that belong to group 1,
Fish A. This particular group of active states warrants
special attention because it possesses attributes that
convey unique information about the mechanisms that
could govern these transitions.

For this particular group, we first wish to obtain the
nonstationary probability density function (PDF) of the
EODR, time locked to the time of movement offset, which
we refer to as the transition-triggered PDF (see below,
Transition-triggered PDF). This is obtained by first aligning
each active state of this group with respect to the time of
movement offset, and chopping off data that fall outside a
300-s time window centered around that time (Fig. 10,
upper panel). The remaining set of EODR traces is then
divided into several time bins, and within each bin we
obtain a PDF for this segment of the EODR traces. Putting
all these segments together yields a time-dependent PDF
for the EODR, distributed around the time of movement
offset (Fig. 10, lower panel). This analysis reveals two
defining features of active-to-inactive transitions for this
group of active states: (1) on average, the EODR under-
goes a downward trend starting �1000 s before move-
ment offset, and extending �1500 s beyond it (although in
Figure 10, we only show �500 s around movement off-
set); (2) there is a significant probability that the fish briefly
returns to an active state almost immediately after move-
ment offset. These traits are absent from the other groups
of active states and from other fish.

A B

C D

Figure 9. The models for both fish capture the essential features of inactive-to-active transitions across different groups. Coloured
traces represent the average of a given group, i.e., the traces from panel A and C correspond exactly to the black traces of Figure
4. All active states are aligned with respect to movement onset time, in the case of experimental data, or with respect to the time of
an upward crossing of the model’s unstable point, in the case of simulation (vertical dashed lines).
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To explain these results, we propose a dynamical sce-
nario that involves a transient period of bistability caused
by a slowly tilting double well potential. The associated
deterministic dynamical system starts off with a single
stable state that corresponds to the active state, then
undergoes two saddle-node bifurcations that cause the
appearance of the inactive stable state followed by the
disappearance of the active stable state, and finally
adopts its final configuration in the inactive state (Fig. 11,
upper panel, red and green traces).

To show that this explanation reproduces the experi-
mental results described above, we perform Monte Carlo

simulations of Equation 1 under this scenario. In this case,
because the timescale is so short, we simply prescribe a
linear decay for the latent variable, slocal(t), which yields a
constant tilting rate for the double well potential function.
This rate is varied until the simulations most closely match
the experimental data (see Materials and Methods, Esti-
mation of the latent variable). The system is initialized in
the active state and forced by this progressive tilting. To
complement the Monte Carlo approach, we also solve the
Fokker-Planck equation associated with this nonstation-
ary stochastic process and those initial conditions (see
Results, Numerical integration of the Fokker-Planck equa-
tion). This solution confirms the presence of a brief, transient

Figure 10. Group 1, from Fish A, shows a high propensity to return briefly to the active state shortly after the time of movement offset.
This is superimposed on a slow, tail-like decay of the EODR. The gray traces in the upper panel correspond to the same active states
that are shown in the upper left panel of Figure 4, but in this case, they are aligned with respect to the movement offset time, which
allows a transition-triggered PDF to be compiled around movement offset (lower panel). Three representative traces in the upper panel
are shown in color as examples.

Figure 11. Top, Set of 30 Monte Carlo simulations of Equation 1, driven by a linear decay of the latent variable, slocal(t). The stable
and unstable point of the system are shown in green and red, respectively, and the black stars are time stamps marking downward
crossings of the unstable point. The system is initialized at x � 1 and allowed to stabilize before the potential landscape starts to tilt
over. All the realisations in the upper panel obey the PDF shown in Figure 12. Bottom, All traces from the upper panel are aligned with
respect to the time stamps, which then allows the transition-triggered PDF of Figure 13 to be obtained.
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bistability period intercalated between two monostable re-
gimes (Fig. 12).

For each realization of the nonstationary stochastic
process, we assign a timestamp to the moment when the
unstable fixed point of the system is crossed, and then
align all the Monte Carlo realizations of the process with
respect to this time (Fig. 11). The same procedure was
applied to the experimental data in Figure 10, except that
the movement offset time was used as the reference.
Note that the realisations found in the upper panel of
Figure 11 follow the nonstationary PDF of Figure 12. Once
the realisations are aligned with respect to the transition
times, however, they can no longer be compared with
Figure 12, because they are now conditioned on a tran-

sition at time 0, rather than on the initial conditions used to
solve the Fokker-Planck equation.

With the simulated EODR traces properly aligned, we
now complete the analysis by obtaining the transition-
triggered PDF for the simulated EODR (Fig. 13). This
distribution is obtained in exactly the same way as the one
shown in Figure 10 for the experimental data. The result-
ing comparison between Figure 13 (simulations) and Fig-
ure 10 (data) is satisfactory, with the model correctly
capturing the slow downward trend of the EODR, as well
as the tendency to return to the active state immediately
after the transition. Note that by fine-tuning parameters
associated with these Monte Carlo simulations, the match
between data and model could be improved. Notably, by
prescribing a nonlinear decay for slocal(t), comprising, e.g.,
a plateau for the second half of the simulations, some
bistability could remain for a longer time, allowing active-
to-inactive transitions to occur �100 s following the tran-
sition time, similar to what is seen in Figure 10.

Transition-triggered PDF
With the active states from a given group aligned with

respect to either the downward crossing of the unstable
point (simulations), or the movement offset time (experimen-
tal data), we seek a PDF for the EODR, or simulated EODR,
conditioned on a transition at a given time: for simulations,
we seek p�x, t��unstable point crossing at t � 0��, and for
experimental data, p�x, t��movement off set at t � 0��,
where x is the simulated or observed EODR, t � ��T/2, T/2�,
and where we choose T � 500 s. To obtain this density,
we bin each individual traces in 5 s windows, such that
with our temporal resolution of 0.01 s and with 20 traces
per group, we have access to 10,000 values per time bin.
For each bin, we then obtain an estimate for the PDF by
using Matlab’s kernel density estimator (“ksdensity” func-
tion, default options). Putting all time bins together, we
can show the evolution of the PDF with a colorplot, cen-
tered on the desired transition time.

Numerical integration of the Fokker-Planck equation
The Fokker-Planck equation associated with Equation 1

is

Figure 12. The nonstationary solution of the Fokker-Planck
equation associated with Equation 1, driven by a linear decay of
the latent variable, slocal(t). The solution confirms the presence of
a transient bistability period (dashed rectangle) that allows the
system to briefly jump back to the active state immediately after
a downward transition. The slope of slocal(t), i.e., the tilting rate,
controls the duration of this bistability period, with a higher rate
leading to a briefer period. This solution is obtained numerically
with a custom partial differential equation solver using finite
volume discretization and implicit time-stepping (see Results,
Numerical integration of the Fokker-Planck equation). Traces
from the upper panel of Figure 10 evolve according to this PDF.

Figure 13. Monte Carlo simulations of the transiently bistable system yields a transition-triggered PDF that is qualitatively similar to
that obtained from the data. The 30 iterations used to generate this distribution are first aligned with respect to the time when the
unstable point of the system is crossed downward and are then processed in the same way as the experimental data to obtain the
transition-triggered PDF shown here.
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�p(x, t)
� t

�
�
�x��U(x, t)

�x
p(x, t)� � D�2p(x, t)

�x2 (4)

where p(x, t) is the PDF of x(t) given the initial condition
x(t � 0) � 1, and where the nonstationarity embedded in
U(x, t) is conveyed by the latent variable, s(t). We obtain
the nonstationary solution of this equation by numerical
integration with a custom partial differential equation
solver that implements a finite volume discretization with
the fully implicit Euler scheme. The advective term is
treated with the upwind scheme and a linear interpolation
profile for the spatial derivative of p(x, t) is applied to the
diffusive term (Patankar, 1980). The resulting algebraic
equation is solved with the tridiagonal matrix algorithm
(Patankar, 1980). The spatial resolution �x is 0.004, for a
total of 1000 grid points between x � �2 and x � 2. The
time step is the same as for the integration of Equation 1,
0.01 s. Note that, although the solution of this equation
(Fig. 12) looks similar to the transition-triggered PDF ob-
tained from the simulations (Fig. 13), they should not be
compared together. Although they are both nonstationary
PDFs, they are not conditioned on the same event: the
former is conditioned on x(t � 0) � 1, with t � �0, T�, while
the latter is conditioned on a transition occurring at t � 0,
with t � ��T/2, T/2�.

RTDs
For this final analysis, we focus on the RTDs, that is, the

PDF for the time spent in a given state. We show that our
proposed modeling framework produces RTDs that are
consistent with those of the data. Here, we focus primarily
on the inactive state RTDs. This is because fish movement
during the active state might cause re-afferent signals that
would interfere with the neural process governing the
termination of movement. Notably, the possibility of the
fish encountering the tank walls is an unavoidable element
that might invalidate our assumption that an open-loop

subsystem is responsible for terminating movement (see
assumption 1). During the inactive state, however, the
fish’s sensing volume remains unchanged and our work-
ing assumptions hold. Unless specified otherwise, the
inactive state is thus implicitly assumed for the remainder
of this section.

Recall that the experimental data from each fish is
divided into several recording sessions. Comparing the
RTDs obtained from each of these sessions with the RTD
of the pooled time series reveals significant statistical
differences between them. This prevents us from assum-
ing that the residence times from different recording ses-
sions are sampled from the same underlying PDF. We
thus refrain from pooling those residence times and rather
opt for analyzing each recording session separately.

For all fish, we find that the stretched exponential family
of PDFs provide a satisfying fit for the RTDs (Table 2,
second column). Stretched exponential distributions lie
on a continuum between exponential and power-law
distributions, with a single parameter controlling which
regime is more expressed (see below, Stretched expo-
nential fitting). Except for the limiting exponential case,
they possess a long tail and are often used to describe
scale-free phenomena (Luevano, 2013).

To determine whether our modeling framework also fits
RTDs with stretched exponential distributions, we use the
same approach as in the Onset-triggered Analysis, where
the latent variable s(t) is given by the smoothed EODR
(Figs. 7 and 8, black traces). The only difference in this
case is that we obtain several traces for s(t), one for each
recording sessions, rather than extracting a single trace
from the pooled EODR time series. Each s(t) trace is then
used to drive Equation 1 and thus to obtain a simulated
EODR associated with a given recording session. These
simulation results are then piped through the same tran-
sition detection algorithm as the data, from which we
extract the residence times and compile the RTDs for

Table 2: Comparison between the fitting statistics for the inactive state RTDs of the data and of model results, for each
recording session

Data Simulations

Fish-session p value Numebr of states �
�t�

(s) p value Number of states �
�t�

(s)
A-1 0.27 49 0.30 473.14 0.31 	 0.34 43.74 	 6.23 0.41	0.34 473.21 	 81.43
A-2 0.37 30 0.27 523.30 0.31 	 0.32 32.34 	 4.49 0.33 	 0.22 466.15 	 77.94
A-3 0.03 51 0.24 773.87 0.25 	 0.31 68.21 	 7.47 0.34 	 0.20 508.46 	 64.71
A-4 0.59 93 0.29 529.59 0.20 	 0.28 80.59 	 8.66 0.38 	 0.21 542.10 	 75.30
A-5 0.45 67 0.47 609.23 0.24 	 0.30 67.76 	 7.01 0.38 	 0.27 542.22 	 66.51
A-6 0.67 31 0.52 524.04 0.27 	 0.31 36.82 	 5.24 0.44 	 0.37 414.97 	 68.59
A-7 0.71 72 0.42 439.88 0.17 	 0.25 72.38 	 8.14 0.32 	 0.20 408.15 	 60.43
B-1 0.65 180 1.00 32.18 0.47 	 0.26 73.70 	 6.62 0.56 	 0.17 53.33 	 7.42
B-2 0.77 99 0.93 25.05 0.44 	 0.25 55.30 	 7.72 0.62 	 0.24 42.12 	 7.21
B-3 0.51 81 0.77 34.65 0.54 	 0.26 71.53 	 6.52 0.71 	 0.22 40.26 	 5.23
B-4 0.78 109 0.61 34.36 0.49 	 0.25 56.20 	 6.22 0.57 	 0.19 51.83 	 8.30
B-5 0.37 35 0.55 34.55 0.44 	 0.25 36.89 	 5.89 0.58 	 0.30 40.94 	 9.41
B-6 0.91 72 0.84 77.18 0.49 	 0.25 76.27 	 7.75 0.57 	 0.15 73.89 	 10.15
B-7 0.69 77 0.45 50.97 0.45 	 0.24 70.58 	 7.70 0.54 	 0.16 58.93 	 8.74
B-8 0.75 34 0.33 71.89 0.47 	 0.27 61.93 	 7.36 0.55 	 0.18 63.61 	 10.50

The p values are from two sample Kolmogorov-Smirnov tests between the empirical RTD and the best fit stretched exponential distribution. � and � t � are
parameters of the stretched exponential distribution of Equation 6. Simulation results are formatted as mean 	 SD, as obtained from 100 iterations of Equa-
tion 1, driven by the s(t) associated with each recording session.
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each recording session. The resulting RTDs are then fitted
to stretched exponential distributions by the same proce-
dure applied to the data. To obtain proper statistics on the
simulated RTDs, we repeat this procedure to obtain 100
iterations of the simulated EODR. From this ensemble of
simulation results, we extract, for each recording session,
the average p value evaluating the stretched exponential
fitting, the average number of states, and the average
parameters of the fitting distribution. We report these

average values in Table 2, and compare them to those of
the experimental data associated with the same recording
session.

Not only are the simulated RTDs well-fitted by stretched
exponentials like the data, but they also closely resemble
the RTDs of their associated recording sessions, regard-
less of which fish is considered, as shown in Figure 14A
for two examples of recording sessions. As mentioned in
Materials and Methods, Derivation of the nonlinear sto-

A

B

Figure 14. A, Inactive state RTDs. Models for both fish produce inactive state RTDs (coloured curves) that are consistent with those
of the data, all of which are fitted by the stretched exponential distribution functions of Equation 6 (dashed curves). For comparison,
gray curves show the best fit exponential densities for the RTDs. Fitting parameters for all sessions can be found in Table 2, for both
experimental data and simulations. Shaded areas are 95% bootstrap confidence interval for the RTDs, obtained with Matlab’s
“bootci” function (1000 bootstrap samples). The simulated RTDs shown here are obtained from a single realisation of Equation 1,
driven by the s(t) associated with the appropriate recording session. The dotted vertical lines correspond to the value of the averaging
window used to obtain s(t). B, Distribution of fitting parameters. These distributions are obtained from the ensemble of 100 iterations
associated with the same sessions as in A. Dashed lines show the value of these parameters obtained from fitting the experimentally
observed RTDs. These values correspond to the fourth and fifth columns of Table 2.
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chastic model, however, the fit between the simulated
and the data RTDs for large timescales should not be
interpreted as model validation, since we have used a
large averaging time window to infer s(t) from the data.
The length of this time window is shown as the black
dotted vertical line in Figure 14. From the ensemble of 100
simulation results associated with each recording ses-
sion, we can also obtain PDFs for the fitting parameters, �
and � t �, which are then compared with the observed
values of these parameters, confirming the correspon-
dence between experimental data and model results (Fig-
ure 14B). In most cases (21 parameters out of 30), the
observed parameter values fall within 1 SD of the simu-
lated ensemble average (Table 2). The match between
observed and simulated RTDs also holds for the active
state, but in this case about half of the recording sessions
are not well-fitted by stretched exponentials, although
they still possess a long tail.

Lastly, as the appearance of stretched exponential dis-
tributions can be associated with long-range correlations
(Luevano, 2013), we examine whether there exist correla-
tions between the duration of successive inactive states
(i.e., duration of the ith inactive state against that of the
(i – 1)th one). For Fish A, we find no such correlations, in
neither model or data. For Fish B, however, a small but
significant correlation is observed (data: r � 0.13,
p � 6.69 
 10– 4; model: r � 0.23, p � 1.89 
 10–15). For
both data and model these correlations persist up to a lag
of six to eight inactive states. This shows that, for Fish B,
the latent variable s(t) imparts some degree of memory on
a slow time scale to the faster dynamics of the EODR. The
fact that these correlations are absent for Fish A can be
explained by the lower level of noise, D, for this individual
(see above, Integration of the stochastic differential equa-
tion). Indeed, less noise means that less transitions are
triggered, which in this case means that the EODR has
less opportunities to “sample” and act as a readout for the
latent variable. This is in line with the notion of aperiodic
stochastic resonance (Collins et al., 1996), where there is
an optimal level of noise at which the fast variable of
slowly and aperiodically driven bistable system is an op-
timal readout of the driving force.

Stretched exponential fitting
The stretched exponential distribution is given by:

p(t) � K exp(�
t�) (5)

Following Luevano (2013), the prefactor K and constant

 can be expressed in terms of the exponent � and the
mean value � t �:

p(t) �
�b

�(1/�) � t �
exp(� (bt/� t � )�) (6)

where b � ��2/�� / ��1/�� . With knowledge of � t �, the
stretched exponential is thus characterized by a single
parameter, �. This property is particularly useful for fitting
purposes, since we have access to an estimate of � t �.
Given a set of residence times, from either the data or
simulations, its empirical PDF, p̃�t�, is estimated via kernel
density estimation (ksdensity function in Matlab, ’support’

option set to ’positive’) and the associated mean is cal-
culated as � t � � �0

� tp̃�t�dt. A 1-D grid search along
possible values of � is then performed to minimize the
squared difference between the estimated density p̃�t�
and the candidate distribution of Equation 6. The quality
of the fit is evaluated with a two sample Kolmogorov-
Smirnov test (“kstest2” function in Matlab, default op-
tions), whose p values are reported in Table 2.

Discussion
We have shown that a low-dimensional modeling

framework, consisting of only a small set of dynamical
components, captures the core aspects of spontaneous
transitions between active and inactive behavioral states
in electric fish. Given that the Jun et al. (2014) dataset
shows signs of nonstationarity, we developed a scheme
that segregates similar segments of data together, allow-
ing us to properly investigate the mechanism from which
stereotyped shapes of active states emerge. We propose
that this data analysis scheme is a useful tool to break
down and understand nonstationarity in stochastic data.
By applying this scheme, we examined in detail the aver-
age structure of the EODR around times of movement
onset and offset.

For transitions around movement onset, our analysis
revealed a positive correlation between the transition am-
plitude and the duration of the active states (for Fish A). By
introducing a time dependency for both the tilt and sep-
aration variable of the potential function, our model cor-
rectly captures the observed correlation. In the case of
transitions around movement offset, our data analysis
scheme allowed us to observe the presence of a brief
period, immediately following movement offset, where
fish show a propensity to return to the active state. To
explain this, we proposed a simple dynamical scenario
where the potential function is tilted toward the inactive
state with a constant rate. This creates a brief period of
bistability that allows the simulated EODR to briefly return
to the active state following an active-to-inactive transi-
tion, as seen in the data. Finally, we showed how simu-
lating the model over long time scale yields time series
where the RTDs are long tailed and well fitted by stretched
exponential distributions, and where correlations emerge
between the duration of succesive states (for Fish B only).
Both these modeling results are consistent with the data.

Together, these analyses lead us to conclude that low-
dimensional, bistable neural dynamics underly the emer-
gence of spontaneous transitions between behavioral
active and inactive states in electric fish, and that sto-
chastic threshold crossing is the mechanism triggering
these transitions. These findings corroborate recent re-
sults that also confirm a key role for fluctuating neural
activity in the timing of walk/rest transitions in freely walk-
ing Drosophila (Maesani et al., 2015). In addition, a major
conclusion of our work is the identification of a nonsta-
tionary latent variable that exerts its influence through the
shape of the bistable potential landscape governing the
transition dynamics. We hypothesize that this bistability is
established in highly recurrent telencephalic networks,
and that neuromodulation deriving from diencephalic

New Research 17 of 21

March/April 2017, 4(2) e0355-16.2017 eNeuro.org



peptidergic systems provides the inferred nonstationary
forcing to this network (Trinh et al., 2016; Elliott et al.,
2017).

Putative neural structures involved in the transitions
Lesions of the telencephalon leave electric fish in the

inactive state (Pereira et al., 2014), suggesting that it
contains the circuitry responsible for the stochastic
switching between inactive and active states. In support
of this hypothesis, a recent study has shown that the
recurrent networks of the gymnotiform telencephalon can
be induced to switch between up and down states (Elliott
and Maler, 2015). Furthermore, work in zebrafish sug-
gests that the orexin and galanin peptidergic systems of
the hypothalamus can control the probability of such
switches (Prober et al., 2006; Woods et al., 2014). The
slow fluctuations of the latent variable that modulates the
relative depth of the wells in our model may therefore be
caused by these peptidergic neurons. Orexin (goldfish,
zebrafish; Kaslin et al., 2004; Huesa et al., 2005) and
galanin (gymnotiform; Yamamoto and Maler, 1992) neu-
rons are located in the lateral hypothalamus and project to
a region of the ventral telencephalon homologous to the
mammalian basal ganglia (Harvey-Girard et al., 2013). The
basal ganglia appears to be the core telencephalic region
essential for initiating specific motor output (Grillner et al.,
2005) and, in both mammals (Grillner et al., 2005) and
gymnotiform (Giassi et al., 2012b; Trinh et al., 2016; Elliott
et al., 2017), the basal ganglia receives input from dorsal
telencephalic recurrent excitatory neural networks. We
therefore hypothesize that (1) the dorsal telencephalon
contains the recurrent networks responsible for the sto-
chastic switching and these networks drive the ventral
telencephalon; (2) movement is initiated by the ventral
telencephalon; (3) the activity of the ventral telencephalon
is modulated, on a slow time scale, by input from the
orexin and galanin neurons of the lateral hypothalamus.
This may not be an entirely open loop system because the
lateral hypothalamus of gymnotiform itself receives a
strong input from dorsal telencephalon (Giassi et al.,
2012a). Further work into the details of the entire network
will, however, be required to elucidate how such de-
scending input might regulate behavioral state transitions.

Limitations of the model
As our goal is to capture the core phenomenology of

the Jun et al. (2014) data with a minimal set of assump-
tions, some features of the data inevitably fall outside the
scope of our modeling framework. Notably, we do not
attempt to reproduce the increased EODR fluctuations in
the active state (Fig. 2), nor the variable intensity of these
fluctuations, as quantified by f4 (Fig. 3A). Although imple-
menting a mapping between the latent variable and the
width of the active state well could resolve this discrep-
ancy, we deem the available data as insufficient to rigor-
ously constrain such an ad hoc addition to the model. A
biophysically motivated description of the neural dynam-
ics would be required to properly address inquiries into
these finer details of the data. To our knowledge, no such
modeling efforts have been made in the context of inter-
mittent locomotion. However, given the apparent two-

state and stochastic nature of the EODR, we can draw
parallels with the phenomena of cortical up and down
states, which also show higher levels of fluctuations in the
up state (Wilson and Kawaguchi, 1996).

Models of up-down state transitions typically comprise
an excitatory and a regulatory component (e.g., inhibition,
short term depression, or adaptation), also known as
activator/repressor dynamics (Hidalgo et al., 2012). The
interplay between both components establishes bistabil-
ity in the network activity and allows stochastic switching
between stable states once noise is added to the system
(Holcman and Tsodyks, 2006; Mejias et al., 2010). Al-
though these up-down state transitions occur at around
0.5-2 Hz, much shorter durations than those of the be-
havioral state transitions examined in our article, similar
dynamical principles might be able to explain both phe-
nomena. For instance, to explain the enhanced fluctua-
tions in up states, Hidalgo et al. (2012) suggest a general
mechanism that entails stochastic perturbations of the
system around the up state, for which the associated
fixed point is a stable focus (Hidalgo et al., 2012). This
results in the amplification of a resonant frequency that is
absent from the down state, where the fixed point is rather
a stable node. The idea to represent the up state as a
stable focus has also been developed for a purely deter-
ministic system (Ghorbani et al., 2012). These studies
suggest that adding a repressor variable to our model, in
such a way as to have the active state fixed point become
a focus (which requires two-dimensional dynamics lo-
cally), might be sufficient to capture this aspect of the Jun
et al. (2014) data.

Adding a second dimension to the model might also
help to capture the asymmetry observed in the shape of
individual active states: most of them show a slow down-
ward trend long before the movement offset time, fol-
lowed by an active-to-inactive transition period that is less
abrupt than that of the inactive-to-active transitions (Figs.
1, insets, and 4). We also speculate that, in a 2-D context,
differences in timescales for the activator and repressor
variable might cause the path toward the active state to
be different from the one leaving it. Although a two-
variable system might be needed to achieve this asym-
metry, we believe that the 1-D analyses conducted in this
article remain valid in the sense that trajectories to and
from the active state might be governed by distinct 1-D
dynamics local to each branch (see Pikovsky and Kurths
(1997) for an example of how a 1-D description can
approximate part of a stochastic 2-D trajectory). This is
why we analyzed transitions around movement offset
independently of those around movement onset.

Spontaneous movement as decisions making
Because movement initiation fundamentally emerges

from decision-making processes (Shadlen and Kiani,
2013), quantitative models of decision-making might pro-
vide an adequate substrate to understand the random-
ness observed in intermittency. So-called accumulator
models, for instance, have been extensively and success-
fully applied to perceptual decision-making tasks (Wang,
2008). Yet, their validity with respect to spontaneous
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movements has only been suggested recently in Schurger
et al. (2012). The authors of that study contend that the
well-known readiness potential (Kornhuber and Deecke,
1965; Libet et al., 1983) that precedes the initiation of
movement reflects ongoing spontaneous fluctuations in
neural activity, rather than activity related to motor prep-
aration and planning, as traditionally believed. To support
this claim, they show that a 1-D model, the leaky stochas-
tic accumulator, with a threshold applied to its output,
provides a satisfying fit to EEG data from spontaneous
movement tasks. In formal terms, their model is a biased
Ornstein-Uhlenbeck process, which describes the evolu-
tion of a Brownian variable in a parabolic potential land-
scape. Although our model variable evolves in a double
well potential landscape, the trajectory near either attrac-
tor states does approximate an Ornstein-Uhlenbeck pro-
cess. With the unstable point of the double well acting as
a threshold, the model we present here is therefore in the
same spirit as that of Schurger et al. (2012). We thus
believe that our contribution supports their conclusions,
and that spontaneous movement initiation in electric fish
is also governed by ongoing fluctuations, with threshold
crossing as the mechanism triggering the initiation of
movement.

Long tail RTDs in intermittent behavior
A large variety of spontaneous animal behavior, includ-

ing intermittent locomotion, is known to be scale-free with
power-laws describing the duration distributions of cer-
tain behaviors (Harnos et al., 2000; Mashanova et al.,
2010; Bazazi et al., 2012). It has been shown in Proekt
et al. (2012) that this is a generic trait of a broad class of
nonequilibrium Markovian systems. According to this
study, the essential requirement is the existence of a
macroscopic timescale that imposes an upper bound on
the duration of behavioral states and beyond which scale
invariance breaks down, which they suggest might arise
from species-specific metabolic processes. They noted
that the ubiquity of scale invariance in spontaneous be-
havior suggests the existence of “an elementary un-
differentiated process in the nervous system that governs
activation of all behaviors [sic].” We believe the model
presented herein provides such a general mechanism: by
continuously modulating the switching rates between at-
tractor states, the nonstationary latent variable, interact-
ing with neural noise, is read out as a behavioral driver
that evolves over a wide range of timescales, giving rise to
the long tail nature of the RTDs. We speculate that the
slower of these timescales, that of the latent variable
itself, fulfills the role of the macroscopic time scale sug-
gested in Proekt et al. (2012).

In the case of electric fish, the RTDs are stretched
exponentials, but our modeling framework could also
generate power-law RTDs. Indeed, it has been shown that
a stochastic bistable system with a nonstationary energy
barrier, similar to the model we present here, can yield
power-law RTDs in certain regimes (Tu and Grinstein,
2005). This emergence of power-law and stretched expo-
nential distributions in nonstationary bistable systems can
be understood in light of the fact that (1) continuously

modulating the energy barrier introduces a distribution of
switching rates over the course of the experiments, (2)
individually, these switching rates translate into exponen-
tially distributed residence times (Gammaitoni et al.,
1998), and (3) it has been shown that sums of exponen-
tials can approximate long tail distributions (Feldmann
and Whitt, 1998; Liebovitch and Tóth, 1991; Johnston,
2006). In addition, an approach similar to ours has been
effective in explaining the appearance of power-law and
long-tailed RTDs in transitions between cortical up and
down states (Mejias et al., 2010).

Future work
As in vivo recordings of telancephalic activity during

spontaneous behavior become available, it should be
possible to constrain a biophysically motivated neural
network model to describe the action selection circuitry
subserving movement initiation and termination. This
could help elucidate the precise mechanism by which
bistable attractor dynamics is established in the network,
thereby exposing a correspondence between biophysical
parameters and the potential function introduced in this
article.

Genetic manipulation of orexin and galanin neurons of
the zebrafish hypothalamus may also directly test whether
these peptides provide the slow modulatory variable that
controls state switching. This could yield a biophysical
model of the slow latent variable, which would be used as
input to the bistable network. This could help understand
the neurophysiological basis of how neuromodulation af-
fects the potential function.

Furthermore, the analyses presented here could be
refined by considering a richer behavioral space than the
binary, active-inactive classification that we used here.
With continuous video tracking, other behavioral states
can be used to quantify fish behavior, such as backward
swimming and turning. Based on the transition probability
matrix obtained from this description, it might be possible
to propose a stochastic multistable attractor model to
describe more fully the observed spontaneous behavior.

Finally, although we have exclusively focused on spon-
taneous behavior, it remains to be understood how intrin-
sic behavioral drivers interact with sensory inputs, i.e.,
what sort of mechanism implements the influence of sen-
sory perturbations? Is it mediated only through neuro-
modulation, as suggested by the induced up states of the
telencephalon (Elliott and Maler, 2015), or is there a more
direct pathway interacting with the inferred attractor dy-
namics? In other words, one might want to eventually
include closed loop features, going beyond the open-loop
perspective that underlies the work presented here, to
gain a better understanding of how behavioral state tran-
sitions occur in more complex settings. Our work also
provides an adequate framework to understand sensory
responsiveness: depending on the configuration of the
potential function and the height of the energy barrier, fish
might be more or less inclined to undergo a behavioral
state transition following sensory input.
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