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Abstract
For decades, electroencephalography (EEG) has been a useful tool for investigating the neural mechanisms
underlying human psychological processes. However, the amount of time needed to gather EEG data means that
most laboratory studies use relatively small sample sizes. Using the Muse, a portable and wireless four-channel
EEG headband, we obtained EEG recordings from 6029 subjects 18–88 years in age while they completed a
category exemplar task followed by a meditation exercise. Here, we report age-related changes in EEG power at
a fine chronological scale for �, �, �, and � bands, as well as peak � frequency and � asymmetry measures for
both frontal and temporoparietal sites. We found that EEG power changed as a function of age, and that the
age-related changes depended on sex and frequency band. We found an overall age-related shift in band power
from lower to higher frequencies, especially for females. We also found a gradual, year-by-year slowing of the
peak � frequency with increasing age. Finally, our analysis of � asymmetry revealed greater relative right frontal
activity. Our results replicate several previous age- and sex-related findings and show how some previously
observed changes during childhood extend throughout the lifespan. Unlike previous age-related EEG studies that
were limited by sample size and restricted age ranges, our work highlights the advantage of using large,
representative samples to address questions about developmental brain changes. We discuss our findings in
terms of their relevance to attentional processes and brain-based models of emotional well-being and aging.
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Introduction
For many decades, electroencephalography (EEG) has

been used effectively for different purposes in a variety of
fields. For example, clinicians have used EEG to under-
stand several illnesses, including epilepsy and sleep dis-

orders; engineers have used EEG to develop wheelchairs
that respond to brain states; and psychologists have used
EEG to track the temporal flow of information through the
sensory systems and identify neural correlates of psycho-
logical processes. Although EEG has been a useful clini-
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Significance Statement

We collected �6000 participants’ EEG data during two different tasks in uncontrolled environments and
identified subtle but robust sex differences in several EEG measures, as well as age-related shifts in EEG
activity on a year-by-year scale. Our large sample size provided us with the power to highlight gradual
age-related changes in several EEG measures, and how those changes differ between males and females,
in a representative population of individuals completing the tasks in uncontrolled, natural environments.
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cal and scientific tool, its applications have been
constrained because recording of EEG data is time-
consuming and requires laboratories equipped with ex-
pensive EEG equipment. Researchers typically collect
data from a small sample of participants and hope that
other researchers replicate the results to validate infer-
ences about the general population. Using much larger
samples would, in most cases, make it easier to establish
the robustness and generalizability of empirical findings.

Fortunately, recent technological advances and industry-
led innovation have led to the development of research-
grade EEG products that are affordable and easily used
by consumers. Our focus here is on the Muse, the EEG
headband created by InteraXon (Toronto, ON, Canada),
who commercialized it as a neurofeedback tool in
mindfulness-based stress reduction (MBSR). MBSR-
related benefits aside [see Kabat-Zinn (1994) for an ex-
planation of MBSR and Kabat-Zinn (2003) and Davidson
et al. (2003) for some empirical evidence of its benefits],
arguably the most beneficial aspect of the Muse to re-
searchers has been that the company has amassed hun-
dreds of thousands of sessions of EEG data from tens of
thousands of consenting users, making InteraXon, to our
knowledge, the holder of the largest EEG database in the
world. Not only is the current database valuable and ripe
for analysis, the ease of use and low cost of the Muse
allows for widespread deployment of the hardware to
capture EEG activity outside of the laboratory.

Consumer use of the Muse typically consists of pairing
it with a compatible mobile device via Bluetooth technol-
ogy and using the Muse application to complete a breath-
guided meditation session. During each session, users
also complete a variation of the Category Exemplar Task
which, in combination with the MBSR portion of the ses-
sion, allows for the EEG to be captured for both a busy
mind during the task and a calm mind during the MBSR
exercise. The Muse database consists of tagged EEG
data representing electrocortical activity recorded at four
scalp locations—temporoparietal (TP9 and TP10) and
frontal (AF7 and AF8) locations—plus a fifth frontal elec-
trode (Fpz) that is used as the reference, while partici-
pants complete the MBSR meditation session and the
Category Exemplar Task.

Here, we used the data from thousands of users to
study age-related changes in EEG power throughout
adulthood. We report several changes as a function of
age, including increased power in the � and � bands, an
age-related reduction in peak � frequency, and an overall
rightward bias in frontal � asymmetry. We discuss the
consistency of our findings with previous laboratory stud-

ies of attention regulation and other processes thought to
be related to mindfulness meditation. We also discuss our
findings in the framework of brain-based models of well-
being related to aging, as well as the value of Big Data in
EEG studies.

Methods
Participants

Data were collected from individuals who used the
Muse between May 2014 and January 2015 and opted
into the optional research program in the accompanying
Muse/Calm mobile application. Our original clean data-
base contained 6081 unique users, which then was re-
duced by excluding users who were �18 years old or who
chose not to report their age, for a final count of 6029
individuals. The distribution of the age and sex of the
users is displayed in Table 1.

Design and procedure
Data were collected using the Muse (formerly known as

Calm) mobile application found on the Apple App Store,
Google Play, and Amazon Appstore. At the beginning of
each user’s first session, the app provided visual and
auditory instructions on how to apply the Muse headset to
attain optimal signal quality and general information about
the Muse application, which provides auditory feedback
to assist in MBSR meditation. The auditory feedback
resembled the natural sound of wind and ocean waves,
with increasing sounds reflecting an active mind, and
quietness reflecting a calm mind. The algorithm determin-
ing the auditory feedback involved an individual calibra-
tion step to establish a baseline. This calibration step was
a 1-min phase in which participants completed a version
of the Category Exemplar Task: participants were told to
close their eyes, and at 0, 20, and 40 s were given a new
category for which they were to think of as many exam-
ples as they could.

After the calibration (CAL) procedure, the participant
began a neurofeedback (NFB) session. The default dura-
tion of the NFB session was 3 min, but users could have
opted to complete 3-, 5-, 10-, or 20-min sessions. During
the NFB session, users were instructed to close their
eyes, focus their mind on counting their breaths, silently/
mentally acknowledge any deviations of attention from
counting their breaths (i.e., mind-wandering), and refocus
on counting their breathing. Although this may not be the
traditional definition of NFB, we refer to this technique as
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Table 1. User and session distribution by age and sex.

Age (years) Male Female Total
18–19 48 17 65
20–29 854 324 1178
30–39 1227 419 1646
40–49 1059 359 1418
50–59 708 344 1052
60–69 400 166 566
70–79 77 20 97
�80 6 1 7
Total 4379 1650 6029

For each user, data were averaged for up to five sessions.
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NFB since the Muse software applies a trade-secret al-
gorithm developed through machine learning to reward a
decrease in EEG signatures of mind-wandering.

The amount of data varied significantly across users,
with some individuals recording several hundred CAL and
NFB sessions. To prevent our analyses from being biased
by frequent users, we averaged the first several sessions,
up to a maximum of five sessions, to create a single pair
of averaged CAL and NFB sessions for each user.

EEG recording and processing
EEG data were recorded using InteraXon’s Muse head-

set (RRID:SCR_014418). The Muse is a consumer and
research-grade EEG headset with four recording channels
(TP9, TP10, AF7, and AF8) referenced to a fifth channel
located at Fpz. Active noise suppression was achieved by
creating driven right leg (DRL) circuits between two fore-
head DRL channels and Fpz. The DRL circuits were used
to establish that the electrodes have skin contact (i.e., any
activity detected by the circuit indicated that the headset
was positioned to have skin contact), after which the
characteristics of the incoming EEG signal (variance, am-
plitude, and kurtosis) were used in a decision tree in which
low power, low amplitude, and low kurtosis were favored
in classifying the real-time signal as clean. EEG was sam-
pled at 220 Hz.

Data were collected from participants from several con-
tinents, and the appropriate 50-Hz (Europe and Asia) or
60-Hz (North America) notch filters were applied to each
individual session depending on self-reported location.
Artifacts were detected by first applying a 2- to 36-Hz
bandpass filter on the raw EEG signal. Continuous EEG
was then divided into 1.16-s epochs (256 samples), and
each epoch’s overall power was compared to a threshold
of 275 �V2. The threshold was previously determined by
large-scale visual inspection to separate clean and noisy
data. Only epochs exceeding the threshold were rejected
from the EEG session. If �10% of any session at any of
the four channels was rejected using this method, then
that entire session (NFB and CAL) was excluded from

analysis. The database originally contained 139,548 ses-
sions, but applying the rejection criteria above reduced
that to 74,321 sessions (i.e., 47% of the sessions were
rejected for containing excessive artifacts). We further
excluded all sessions beyond the first five clean sessions
per user, reducing the database to 22,386 sessions, from
6029 unique users. There were an average of 3.7 sessions
per user, with each user having at least one session but no
more than five sessions.

EEG measures
All analyses were done on EEG data from the entire

cleaned session. For each session, Matlab’s fft function
was used compute a power spectrum with a frequency
resolution of 1 Hz. Total power (�V2) was calculated for
the � (0–2 Hz), � (3–7 Hz), � (8–13 Hz), and � (14–30 Hz)
bands. Lower and upper � power were also quantified in
the 8- to 10-Hz and 11- to 13-Hz frequency ranges. Band
power was then log10-transformed for normalization. Ad-
ditionally, � asymmetry was calculated by subtracting the
log10-transformed left � power from the log10-transformed
right � power separately for the frontal and temporal
locations. Finally, � peak frequency, defined as the fre-
quency component in the 8- to 13-Hz range with the
highest power, was measured for each person, separately
at each channel.

Results
Power spectra, averaged across users, were calculated

separately for the CAL and NFB sessions at each channel
(Fig. 1). EEG power was greater in temporoparietal than
frontal regions, especially at lower frequencies (Fig. 1).
There was also a very noticeable peak in the � frequency
range in temporoparietal channels, but not frontal chan-
nels. Total power in the 0- to 30-Hz range was signifi-
cantly higher in females than males at all channels (Fig. 2).
For CAL, the sex difference was significant at all channels
(t6027 � 5.08, p � 0.00001). For NFB, the sex difference
was significant at channels AF7, AF8, and TP10 (t6027 �
3.4, p � 0.001) but not at TP9 (t6027 � 1.66, p � 0.097).
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Figure 1. Average power spectra at each channel for CAL (left) and NFB (right) conditions. Frontal and temporoparietal channels are
represented by black and gray lines, respectively, and left and right channels in these regions are represented by solid and dashed
lines, respectively.
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Band analysis
To evaluate age-related changes in each dependent

variable, we used linear models that included age, age2,
sex, task, and channel, as well as all two-, three-, and
four-way interactions, as predictor variables. For all mea-
sures, task and channel each had at least one significant
interaction with each other, age, age2, sex, or the age �
sex and age2 � sex interaction. Because of these inter-
actions, we proceeded with separate analyses for each
channel and task, using linear models that included only
age, age2, sex, and the age � sex and age2 � sex
interactions. If either interaction was significant, then sep-
arate models that included age and age2 as predictors
were fitted to data from males and females. Although all
analyses were conducted for both CAL and NFB, for
brevity, we present the accompanying data figures only

from the NFB session. The pattern of results were quali-
tatively similar across CAL and NFB except in a few cases
that we discuss in the text. Furthermore, Table 2 presents
all of the results from the models fitted to the CAL data. To
view the accompanying figures for CAL sessions, please
contact the corresponding author.

Preliminary analyses indicated that the average within-
age variance (i.e., variance across all participants within
the same year, averaged across all years) was much
larger than the between-age variance, a trend seen across
all channels for all measures (Fig. 3). Because we were
interested primarily in age-related variance, we used
weighted least-squares (WLSs) to fit linear models to the
mean at each age, where the weight corresponded to the
number of users at each age. This method effectively
removes within-subject and within-age variation. The co-
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Figure 2. Log10-transformed EEG power in the 0- to 30-Hz range measured in females (white) and males (gray) at each channel for
NFB (left) and CAL (right), shown in the form of violin plots (Hintze and Nelson, 1998). Filled circles represent the median, and the first
and third quartiles are identified by the bottom and top of the bold vertical lines, respectively. The bottom and top of the thin vertical
line represent the lower and upper adjacent values, respectively. Females had slightly higher power at all channels, regardless of task.

Table 2. Regression coefficients (rounded to nearest 0.00001) estimated for each measure and channel in the CAL condition.
Measure Channel Intercept Age Age2 Sex Age � sex Age2 � sex R2 Age (m) Age (f) Age2 (m) Age2 (f)
� AF7 0.43339† –0.00152��� 0.00010��� –0.03076� 0.00028 0.00010 0.210†

� AF8 0.42873† –0.00201† 0.00013† –0.03468� 0.00101 0.00009 0.280†

� TP9 0.95463† –0.00312† 0.00011† 0.01803 –0.00095 0.00004 0.482†

� TP10 0.94772† –0.00320† 0.00013† 0.02609� –0.00074 0.00001 0.535†

� AF7 –0.13675† –0.00064� 0.00007��� 0.01798 0.00084 0.00013�� 0.380† –0.00064� 0.00021 0.00007��� 0.00020†

� AF8 –0.15823† –0.00095�� 0.00008��� –0.00064 0.00091 0.00011� 0.282† –0.00095�� –0.00004 0.00008��� 0.00019†

� TP9 0.43667† –0.00191† 0.00006�� 0.01132 0.00025 0.00008� 0.393† –0.00191† –0.00166��� 0.00006�� 0.00013���

� TP10 0.41830† –0.00225† 0.00009† 0.03257��� 0.00018 0.00005 0.515†

� AF7 –0.32292† 0.00090�� 0.00006�� 0.11225† 0.00116� 0.00009� 0.798† 0.00090��� 0.00206† 0.00006��� 0.00015†

� AF8 –0.36987† 0.00071� 0.00007��� 0.07154† 0.00068 0.00008� 0.645† 0.00071� 0.00139�� 0.00007��� 0.00016†

� TP9 0.45606† –0.00139† –0.00004� –0.01559 0.00040 0.00015��� 0.229† –0.00139��� –0.00099 –0.00004� 0.00011��

� TP10 0.47902† –0.00145† –0.00000 0.00667 0.00000 0.00012� 0.228† –0.00145��� –0.00144�� –0.00000 0.00011��

� AF7 –0.08567† 0.00242† 0.00009�� 0.26647† 0.00072 0.00001 0.846†

� AF8 –0.15873† 0.00318† 0.00008�� 0.20429† –0.00027 –0.00000 0.810†

� TP9 0.34545† 0.00173† –0.00005�� 0.05945† 0.00008 0.00009� 0.608† 0.00173† 0.00181��� –0.00005�� 0.00004
� TP10 0.37780† 0.00224† –0.00000 0.07855† –0.00085 0.00007 0.589†

� Peak AF7 10.28787† –0.02162† 0.00010 –0.00010† 0.00122 0.00002 0.510†

� Peak AF8 10.22824† –0.01597† 0.00018 –0.29203��� –0.00341 0.00024 0.351†

� Peak TP9 9.57089† –0.01469† 0.00002 0.02296 –0.00592� –0.00010 0.584† –0.01469† –0.02060† 0.00002 –0.00008
� Peak TP10 9.60727† –0.01367† –0.00004 0.06327 –0.00426 –0.00007 0.567†

� Asym AF8–AF7 –0.04695† –0.00018 0.00002 –0.04071† –0.00048 –0.00001 0.338†

� Asym TP10–TP9 0.02296† –0.00006 0.00004† 0.02225† –0.00039 –0.00004 0.220†

Bolded rows indicate cases where R2 � 0.5. �p � 0.05, ��p � 0.01, ���p � 0.001, †p � 0.0001.
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efficients of the resulting WLS model are identical to a
traditional least-squares regression applied to the nonav-
eraged data from individual users, but the overall fit of the
model (i.e., R2) is much higher because the averaging
removes within-age variance.

In all models, age was treated as an integer variable,
and sex (male � 0; female � 1) was a dichotomous
variable. Furthermore, to have a more meaningful inter-
cept in our model, age was centered on the mean age of
our participants (i.e., 42 years). Therefore, the best-fitting
value of the intercept represents the estimate of the de-
pendent variable (e.g., � power) for males at 42 years of

age, the sex parameter represents the difference between
males and females at 42 years of age, the age and age2

parameters represent the change in the dependent vari-
able that occurs (on average) in males with each unit
change in age and age2, and the sex � age and sex �
age2 parameters represent the difference between the
age and age2 effects in males and females. The results of
the regression analyses are shown in Tables 2 and 3.
Because of the large sample size, the linear model ac-
counted for a statistically significant portion of the vari-
ance in every case. However, for the sake of brevity, our
discussion focuses on the subset of cases in which the
linear model accounted for at least 50% of the age-related
variance.

Delta power
Delta power measured at each electrode in the NFB

condition is plotted as a function of age in Fig. 4, and the
results of the regression analyses in the CAL and NFB
conditions are shown in Tables 2 and 3. In the CAL
condition, the regression model accounted for statistically
significant amounts of age-related variance at all elec-
trodes, but accounted for �50% of age-related variance
only in channel TP10 (and 48% of the variance in TP9).
Similar results were obtained in the NFB condition: all of
the fits accounted for statistically significant amounts of
variance, but accounted for �50% of the variance only in
the two temporoparietal channels. In both conditions, �
power decreased between 20 and 40 years of age, and
then leveled off or increased slightly beyond �50 years of
age. We also found that, in the CAL condition, the effect
of sex differed significantly from zero (TP10 � � 0.02609,
p � 0.02), suggesting that � power was slightly higher in
females than males.

Theta power
Theta power measured at each electrode in the NFB

condition is plotted as a function of age in Fig. 5. The
figures indicate that the effects of age on � power were
qualitatively similar to those found with � power. For
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Figure 3. Standard deviation of the average band power across
ages (x-axis) plotted with the average standard deviation of each
band power across participants within each age (y-axis). Within-
age SD was calculated by calculating the SD across participants
at each given age. Ages 78� all had two or fewer participants, so
we grouped them into a single age bin. Mean within-age SD
(y-axis) was calculated as the average within-age SD. Between-
age SD (x-axis) was calculated by first computing the mean band
power for each individual age, then calculating the SD across
these values.

Table 3. Regression coefficients (rounded to nearest 0.00001) estimated for each measure and channel in the NFB condition.
Measure Channel Intercept Age Age2 Sex Age � sex Age2 � sex R2 Age (m) Age (f) Age2 (m) Age2 (f)
� AF7 0.29099† –0.00202† 0.00013† –0.02249 0.00133 0.00011 0.267†

� AF8 0.28779† –0.00267† 0.00013† –0.02768 0.00130 0.00012� 0.319† –0.00267† –0.00137 0.00013† 0.00025†

� TP9 0.76347† –0.00388† 0.00011† –0.00821 –0.00021 0.00006 0.620†

� TP10 0.74835† –0.00418† 0.00014† 0.00111 0.00013 –0.00000 0.662†

� AF7 –0.24320† –0.00136† 0.00008† 0.02290� 0.00207��� 0.00010� 0.412† –0.00136† 0.00071 0.00008��� 0.00019†

� AF8 –0.26573† –0.00146† 0.00007��� 0.00793 0.00161�� 0.00013�� 0.365† –0.00146† 0.00015 0.00007�� 0.00021†

� TP9 0.35367† –0.00196† 0.00004� –0.02996�� 0.00082 0.00014��� 0.373† –0.00196† –0.00113� 0.00004� 0.00017†

� TP10 0.31149† –0.00262† 0.00009† –0.00430 0.00087 0.00010� 0.480† –0.00262† –0.00175��� 0.00009† 0.00018†

� AF7 –0.39869† 0.00123† 0.00007��� 0.11474† 0.00206��� 0.00008� 0.815† 0.00123† 0.00329† 0.00007��� 0.00015†

� AF8 –0.44195† 0.00101�� 0.00006��� 0.08223† 0.00142� 0.00010� 0.712† 0.00101�� 0.00243† 0.00006�� 0.00016†

� TP9 0.48919† 0.00049 –0.00005� –0.02840� 0.00065 0.00016�� 0.105�� 0.00049 0.00114 –0.00005� 0.00011��

� TP10 0.47046† 0.00024 –0.00002 –0.00498 0.00052 0.00013�� 0.087�� 0.00024 0.00075 –0.00002 0.00012��

� AF7 –0.18422† 0.00197† 0.00011��� 0.26647† 0.00174� 0.00004 0.868† 0.00197† 0.00372† 0.00011† 0.00015��

� AF8 –0.23850† 0.00233† 0.00008�� 0.21553† 0.00046 0.00003 0.813†

� TP9 0.29314† 0.00206† –0.00005�� 0.05542† 0.00067 0.00012�� 0.669† 0.00206† 0.00273† –0.00005�� 0.00006�

� TP10 0.28957† 0.00216† 0.00000 0.08575† 0.00011 0.00007 0.675†

� Peak AF7 9.72796† –0.03847† 0.00052��� –0.03651 0.00159 –0.00028 0.779†

� Peak AF8 9.82156† –0.03457† 0.00010 –0.05259 –0.00074 –0.00009 0.665†

� Peak TP9 9.46783† –0.01795† 0.00001 0.11219� –0.00647� –0.00032 0.723† –0.01795† –0.02442† 0.00001 –0.00030
� Peak TP10 9.54145† –0.01891† –0.00000 0.06429 –0.00865��� 0.00004 0.768† –0.01891† –0.02756† 0.00000 0.00004
� Asym AF8–AF7 –0.04326† –0.00022 –0.00000 –0.03251† –0.00064 0.00002 0.235†

� Asym TP10–TP9 –0.01873† –0.00025 0.00004† 0.02342† –0.00013 –0.00003 0.246†

Bolded rows indicate cases where R2 � 0.5. significance levels: �p � 0.05, ��p � 0.01, ���p � 0.001, †p � 0.0001.
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example, as was the case with � power, � power de-
creased slightly between 20 and 40 years of age and
increased slightly beyond 50 years of age. There also is an
indication that sex differences were larger in individuals
older than 60 years of age. However, a comparison of
Figs. 4 and 5 suggests that age-related changes in � were
smaller than age-related changes in �. The regression
results are consistent with these observations: as was
found with � power, only the regression on data from the
temporoparietal channel TP10 accounted for large
amounts (i.e., �50%) of age-related variance in � power,
and the significant effect of sex at TP10 and the signifi-
cant interactions between sex and either age or age2 in
almost all cases reflected greater � power for females
than males, especially at later years. However, the best-
fitting coefficients for the age and age2 variables were
smaller for � power than for � power.

Alpha power
Alpha power measured at each electrode in the NFB

condition is plotted as a function of age in Fig. 6. A
comparison of Fig. 6 to Figs. 4 and 5 suggests that

age-related changes in � power differed from age-related
changes in � and � power. For example, sex differences in
� power, particularly at frontal electrodes, are much larger
than those observed for � and � power. Also, unlike what
was found with � and � power, age-related changes in �
power appear to be greater at frontal than temporopari-
etal electrodes, and furthermore � power appears to in-
crease, not decrease, with age. The regression analyses
were consistent with these observations. In the CAL and
NFB conditions, the linear models accounted for signifi-
cant portions of age-related variance at all electrodes, but
for at least 50% of age-related variance only at AF7 and
AF8. Also, the best-fitting coefficient for age was positive
at frontal sites, indicating that � power, unlike � and �
power, increased with increasing age. However, the best-
fitting coefficient for age at the temporoparietal sites was
slightly negative, indicating an age-related decrease in
temporoparietal � power. The significant coefficient for
sex, indicating greater � power in females than males at
the mean age of 42, was much greater than the effect of
sex estimated for � and � power. Finally, the age and age2
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coefficients were generally larger for females than males,
indicating greater age-related changes in � power for
females.

Beta power
Beta power measured at each electrode in the NFB

condition is plotted as a function of age in Fig. 7. As was
found with � power, (1) there is clear evidence that �
power measured at frontal electrodes increased with age;
(2) � power was on average significantly higher in females
than males; and (3) the sex difference and the trend
across age were much smaller in data from temporopari-
etal electrodes, but unlike �, still highly significant (Figs. 6
and 7). The regression results in the CAL and NFB con-
ditions generally were consistent with these observa-
tions—the coefficients for age, age2, and sex were
significantly greater than zero—although the model ac-
counted for �50% of the age-related variance in � power
at frontal and temporoparietal electrodes.

Alpha peak frequency
Alpha peak frequency in the NFB condition is plotted as

a function age for each electrode in Fig. 8. First, the �

peak frequency analysis differs from the other analyses
because not all participants had a clear � peak frequency.
In fact, of the 6029 participants, �88% had a peak fre-
quency in the � range at the temporoparietal sites, while
only 50% had an � peak frequency in the frontal sites.
More specifically, at each channel, the following number
of participants had � peak frequencies during the NFB
session: TP9 (5374), TP10 (5379), AF7 (3085), and AF8
(2806). Similarly, the number of participants with � peak
frequencies during the CAL session were as follows: TP9
(5136), TP10 (5320), AF7 (3111), and AF8 (2939; note: the
weights in the WLS regression models were adjusted to
reflect these numbers for the � peak frequency analyses).
Importantly, � peak frequencies were found for categor-
ically more of the temporoparietal sites compared with
the frontal sites, which is consistent with the grand
average power spectral density (Fig. 1) showing a clear
peak in the � range for sites TP9 and TP10, but not for
AF7 and AF8. Regardless, even after exclusion of ob-
servers without visible � peak frequencies, we had
sufficient data to complete the analyses across the life
span for each sex.
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At all four electrodes, the � peak frequency exhibited a
steady decline between 20 and 60 years of age. Com-
pared with effects of age on the various power bands,
age-related changes in � peak frequency exhibit a much
smaller quadratic component and a much smaller differ-
ence between males and females. Regression analyses of
the CAL and NFB data were consistent with these obser-
vations, though the model accounted for more age-
related variance at all four electrodes in the NFB condition
than the CAL condition. At temporoparietal sites, the
trend across age was significantly more negative for fe-
males than males. Also note that the effect of age was
slightly greater for � measured at frontal electrodes than
temporoparietal electrodes (Tables 2 and 3).

Alpha asymmetry
Alpha asymmetry reflects the difference between left

and right � power, measured by subtracting the log10-
transformed � power in the left hemisphere from the
log10-transformed � power in the right hemisphere. The
asymmetry is calculated separately at the frontal and
temporoparietal sites; a negative asymmetry value re-

flects stronger left than right � power, and a positive
asymmetry value reflects stronger right than left � power.
Increased � power is typically associated with increased
inhibition, and thus � power is thought to be inversely
related to brain activity; increased � in one hemisphere is
interpreted as decreased overall activity in that hemi-
sphere. For example, a negative � asymmetry value typ-
ically is interpreted as showing greater neural activity in
the right hemisphere relative to the left hemisphere.

Alpha asymmetry is plotted as a function of age in Fig.
9. At frontal electrodes, the asymmetry was slightly neg-
ative, indicating that � power was relatively greater in the
right than left hemisphere, and the asymmetry was more
negative in females than males. At temporoparietal elec-
trodes, the average asymmetry was slightly positive or
zero, and the asymmetry was slightly more positive in
females than males. Finally, at both frontal and temporo-
parietal sites, we found little evidence for significant age-
related changes in � asymmetry. The regression analyses
were consistent with these observations: the best-fitting
intercept was significantly less than zero at the frontal
electrodes in the CAL and NFB conditions and signifi-
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cantly greater than zero at the temporoparietal electrodes
in the CAL condition; in both conditions, the sex coeffi-
cient was significantly less than zero at frontal electrodes
and significantly greater than zero at temporoparietal
electrodes, and the effect of age was small in all condi-
tions. Furthermore, in all cases, the model failed to ac-
count for at least 50% of the variance, again suggesting
that there was very little systematic age-related variance
in � asymmetry.

Discussion
We collected frontal and temporoparietal EEG data

from 6029 individuals ranging in age from 18 to 88 years
while they performed a Category Exemplar Task and an
MBSR-based exercise conducted at home using the
Muse headband. We investigated how EEG power in the
traditional frequency bands, � peak frequency, and �
asymmetry changed as a function of age and sex. Our aim
was to use the powerful sample size of the data collected
using the Muse to characterize both large and subtle
changes in EEG dynamics.

We found that EEG power was stronger in temporopa-
rietal than frontal leads (Fig. 1). This finding was expected,
given that all channels were referenced to Fpz, although
temporoparietal regional power is generally higher than
frontal regions (Dustman et al., 1993; Coben et al., 2008).
Our findings highlight the prevalence of a sex difference in
the general population, with females having higher overall
EEG power in most frequency bands (Veldhuizen et al.,
1993). The sex differences are consistent with previous
studies demonstrating higher power in females in � and �
bands during sleep (Latta et al., 2005), slow waves during
sleep (Mourtazaev et al., 1995), overall � activity (Mundy-
Castle, 1951), and �, �, �, and � bands during rest and
photic stimulation (Wada et al., 1994; Carrier et al., 2001).
These replications of previously reported studies suggest
that valid and reliable aspects of EEG can be measured
when Muse is used by consumers in an uncontrolled
environment. Overall higher power in female EEG may be
related to various functional and anatomical sex differ-
ences, including thicker cortical gray matter in females
(Sowell et al., 2007), increased neuronal processes in
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females (Rabinowicz et al., 1999), and different skull thick-
nesses (Roche, 1953; Hagemann et al., 2008).

Power in the slow wave � and � bands decreased
significantly with age (Figs. 4 and 5), and although the
decrease was slight, it is consistent with the downward
trend of these slow waves observed during childhood
(Matthis et al., 1980; Benninger et al., 1984; Marshall
et al., 2002; Otero et al., 2003). The downward trend in �
and � is accompanied by increased power in the � and �
bands (Fig. 6 & 7), which has not been previously re-
ported, but is consistent with trends observed throughout
childhood (Benninger et al., 1984; Carrier et al., 2001).

Consistent with previous findings, � power increased
significantly with age and was greater in females than
males (Mundy-Castle, 1951; Carrier et al., 2001). Although
our methods were not designed to measure � activation in
response to stimulus/task demands, increased � power in
older adults may be consistent with work demonstrating
an association between poor attention and � modulation
(Gola et al., 2012). Increased baseline � activity may be
associated with less � modulation overall: training with �
neurofeedback is associated with increased attention and

arousal, which is thought to explain both lower reaction
times and improved sensitivity in a sustained attention
task (Egner and Gruzelier, 2004). Sustained visual atten-
tion has also been linked to � activity (Wróbel, 2000),
underscoring the importance of understanding how �
activity changes with age, and whether these changes are
associated with age-related changes in attention. The link
between � modulation and baseline � activity is not yet
established, but the strong age-related trend observed
here suggests it may merit further investigation.

Females had significantly greater frontal � power than
males, consistent with previous results (Latta et al., 2005).
As indicated by the intercepts of the linear models, frontal
� power was greater during CAL than NFB, suggesting a
task-mediated modulation. Alpha power is known to be
modulated by task demands (Payne et al., 2013), fatigue
(Crabbe and Dishman, 2004), and mindfulness meditation
(Kerr et al., 2011), all of which are likely at play during use
of the Muse.

The strongest age-related change we saw in the data
was a year-by-year slowing of the � peak frequency (Fig.
8), which decreased similarly for males and females. This
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decrease was strongest at frontal sites. The slowing of �
replicates extensive research demonstrating that � peak
frequency is age dependent (Woodruff and Kramer, 1979;
Duffy et al., 1984; Giaquinto and Nolfe, 1986; Clark et al.,
2004). Alpha slowing throughout adulthood is in contrast
to the increase in the � peak frequency during normal
childhood development (Marshall et al., 2002). The shift at

the two ends of the lifespan do not seem to be perfectly
symmetrical, with changes in the adult years being very
gradual compared with rapid changes throughout child-
hood. The age-related decline of the � peak frequency
may be associated with reduced working memory capa-
bility (Clark et al., 2004). Using neurofeedback, Angelakis
et al. (2007) demonstrated that training older adults to
increase their peak � frequency was positively correlated
with cognitive processing speed and executive function,
but not with improved memory. It is also worth saying that
correlations between � peak frequency and cognitive
measures should consider the role of �, given our earlier
discussion of � power being associated with attentional
control. In our sample, there was a significant negative
correlation between � peak frequency and � power,
where � power increased as � peak frequency slowed
(AF7: r � –0.34, � � –0.084, p � 0.0002, with similar
results at other channels). This relation may be important,
because changes in � power and � peak have both been
independently associated with cognitive/attentional defi-
cits, but further direct investigation is required.

We used frontal � asymmetry as a proxy to measure
differences in relative left/right EEG activity. Participants,
especially females, presented with negative frontal asym-
metry during both sessions, representing greater relative
right frontal activity (Davidson et al., 2000). Relatively
greater right frontal activity is associated with the behav-
ioral inhibition system (compare the behavioral activation
system, together known as BIS/BAS), which entails a
general tendency to withdraw and disengage from aver-
sive stimuli and a greater propensity to experience nega-
tive emotion (Sutton and Davidson, 1997), although this
relation has been questioned (Coan and Allen, 2003).
Also, frontal asymmetry was very similar during CAL and
NFB sessions, suggesting that it is likely trait and not state
dependent (Tomarken et al., 1992; Mathewson et al.,
2015). Further analyses are required to test the stability/
test-retest reliability of asymmetry during sessions with
the Muse.

If asymmetry is a valid index of affective types, then the
overall negative asymmetry is especially interesting given
our data: participants were consumers using a neurofeed-
back device to assist in mindfulness-based exercises at
home. Besides early adopters likely comprising a signifi-
cant portion of the current consumers (who comprise
more men than women in markets such as the United
States; Chau and Lung Hui, 1998; Ipsos, 2012), there
ought to be a sizeable proportion of consumers who used
the Muse specifically to improve their mental well-being.
Therefore, we can expect the user-base to present with
negative affect/negative asymmetry, especially given that
we restricted our sample to the first five sessions per
participant. InteraXon’s constantly growing, updated da-
tabase should be used to compare the same users after
extensive meditation sessions. In fact, MBSR training with
healthy older individuals has been linked to improved
well-being and a reduced rightward shift in activity
(Moynihan et al., 2013). Interestingly, their results suggest
a normal, age-related rightward trajectory of asymmetry,
with MBSR helping prevent/reduce this trajectory, which
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is then associated with improved well-being on several
fronts, including executive and immune functions (David-
son et al. (2003).

There is growing evidence linking � asymmetry and
mindfulness, and mindfulness to enhanced physical and
mental well-being. For example, mindfulness exercises
can modulate somatosensory attention (Kerr et al., 2013),
consistent with the view that mindfulness enhances at-
tention to bodily sensations (Kabat-Zinn, 1994; Kerr et al.,
2013). More generally, mindfulness is associated with
attention regulation (Rani and Rao, 1996; Tang et al.,
2007), which is tightly linked to � oscillations (Payne and
Sekuler, 2014), suggesting that � training through mind-
fulness may be beneficial for enhancing attentional
control. Other benefits of mindfulness-based exercises
include reduced emotional interference (Ortner et al.,
2007) and increased regulation (Arch and Craske, 2006),
lower perceived stress and increased positive affect (Tang
et al., 2007; Carmody and Baer, 2008; Nyklí�ek and Kui-
jpers, 2008), reduced fatigue and anxiety (Zeidan et al.,
2010), and improvements in working memory and pro-
cessing fluency (Chambers et al., 2008; Zeidan et al.,
2010). Future replications of EEG patterns measured in
laboratory settings with data collected in the home with
Muse will help us to generalize experimental results to
real-world scenarios and better understand the physical
and psychological benefits of mindfulness-related exer-
cises.

In conjunction with the above discussion, it is worth-
while to be cognizant of the nature of the data and any
possible issues of selection bias (Hernán et al., 2004).
Although these issues are unlikely to impact our results in
any significant way due to the massive sample size, the
consumer product may have attracted individuals seeking
to begin, or continue, meditation exercises. As such, the
data presented here may not be entirely representative of
the normal population, but rather a population of medita-
tive individuals, or a population of individuals who share
some trait that makes them more likely to be interested in
meditation. The data presented here were not tagged with
information regarding the users’ intents and experiences
with mediation; however, our understanding is that Inter-
aXon has begun to collect this data as part of a software
update, allowing future researchers to address any po-
tential issue of bias in participant selection in an updated
and much larger database. Furthermore, the fact that our
pattern of results is consistent with previous results found
in smaller, but well-controlled, studies increases our con-
fidence that selection bias effects did not drive our re-
sults. As such, we focus our conclusions on the true
power of this study: the enormous sample size with data
points at every adult age, separately for males and fe-
males.

Overall, with increasing age there was a shift in EEG
power toward higher frequency bands at the expense of
the lower frequencies. Peak � frequency underwent a
year-by-year slowing, and Muse users, especially fe-
males, exhibited relatively greater right frontal activity. We
demonstrated large-scale replication of previous small-
scale laboratory studies, which we see as a validation of

not only these previous studies, but also the Muse data-
base, highlighting the utility of doing further, more intricate
analyses using this large and perhaps more representa-
tive community-based participant database. Our primary
aim was to demonstrate the utility of using such datasets
to look at EEG dynamics at the population level, as they
provide remarkable power to detect sex differences and
gradual changes with age.
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