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Visual Abstract
Although sensory cortex is thought to
be important for the perception of
complex objects, its specific role in
representing complex stimuli re-
mains unknown. Complex objects
are rich in information along multiple
stimulus dimensions. The position of
cortex in the sensory hierarchy sug-
gests that cortical neurons may inte-
grate across these dimensions to
form a more gestalt representation of
auditory objects. Yet, studies of cor-
tical neurons typically explore single
or few dimensions due to the diffi-
culty of determining optimal stimuli in
a high dimensional stimulus space.
Evolutionary algorithms (EAs) provide

a potentially powerful approach for exploring multidimensional stimulus spaces based on real-time spike
feedback, but two important issues arise in their application. First, it is unclear whether it is necessary to
characterize cortical responses to multidimensional stimuli or whether it suffices to characterize cortical re-
sponses to a single dimension at a time. Second, quantitative methods for analyzing complex multidimensional
data from an EA are lacking. Here, we apply a statistical method for nonlinear regression, the generalized additive

Significance Statement

The auditory cortex is thought to be integral for the perception of complex sounds, which are characterized
by multiple stimulus dimensions, such as center frequency, intensity, and bandwidth. Traditional studies of
cortical neurons only consider one or few dimensions of sound at a time, but it is possible that cortical
neurons integrate across these dimensions when processing sounds. Here, we apply an evolutionary
algorithm and a generalized additive model to quantitatively explore cortical response to 5-dimensional
auditory stimuli. Our results demonstrate that cortical neurons are significantly driven by interactions across
stimulus dimensions in ways that are not captured by low-dimensional characterizations and motivate the
use of multidimensional stimuli in the study of sensory cortices.
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model (GAM), to address these issues. The GAM quantitatively describes the dependence between neural
response and all stimulus dimensions. We find that auditory cortical neurons in mice are sensitive to interactions
across dimensions. These interactions are diverse across the population, indicating significant integration across
stimulus dimensions in auditory cortex. This result strongly motivates using multidimensional stimuli in auditory
cortex. Together, the EA and the GAM provide a novel quantitative paradigm for investigating neural coding of
complex multidimensional stimuli in auditory and other sensory cortices.
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Introduction
How does a sensory system recognize complex objects?
This fundamental question in neuroscience remains
poorly understood. Complex objects typically carry infor-
mation about many stimulus dimensions. For example, an
auditory object could be characterized by frequency,
bandwidth, amplitude modulation, intensity, location, and
other parameters. Given the importance of sensory cortex
in the perception of objects and its place in the sensory
hierarchy, it is likely to play an important role in integrating
different stimulus dimensions represented separately in
the periphery. For such neurons, the traditional approach
of characterizing the neuron’s response to each dimen-
sion separately (e.g., a one-dimensional tuning curve) may
be incomplete. Indeed, previous studies analyzing the
separability of the spectrotemporal receptive field (STRF)
of neurons have shown that cortical STRFs may not be
separable (Depireux et al., 2001; Sen et al., 2001; Linden
et al., 2003) and that cortical neurons can display nonlin-
ear tone-tone interactions (Shamma et al., 1993; Nelken
et al., 1994; Suga, 1994; Calford and Semple, 1995; Bro-
sch and Schreiner, 1997; Sutter et al., 1999; Kadia and
Wang, 2003). Thus, the use of multidimensional stimuli to
probe cortex is likely to reveal important aspects of cor-
tical processing and integration missed by traditional
methods.

Evolutionary algorithms (EAs) have tremendous poten-
tial for investigating the neural coding of multidimensional
stimuli in a wide variety of systems in neuroscience
(Bleeck et al., 2003; Yamane et al., 2008; Carlson et al.,
2011; Hung et al., 2012; DiMattina and Zhang, 2013;
Chambers et al., 2014). EAs have been applied to inves-
tigate the coding of sounds in inferior colliculus and co-
chlear nucleus (Bleeck et al., 2003), 2-dimensional shapes
in visual area V4 (Carlson et al., 2011), and 3-dimensional
shapes in inferotemporal cortex (Yamane et al., 2008).

Recently, an EA was developed for finding highly effective
stimuli for maximizing the firing rate of auditory cortical
neurons in a 5-dimensional stimulus space (Chambers
et al., 2014). The EA probed cortical neurons with
5-dimensional stimuli and gradually modified these stimuli
“online” based on the neural firing rate, to find stimuli that
were most effective in driving the neuron. The parameter
space in this situation is vast and impossible to explore
using traditional methods. The EA was successfully able
to identify highly effective stimuli for cortical neurons in
five dimensions over several “generations” of stimuli.

Given the integrative role of auditory cortex, we hypothe-
sized that cortical neurons show interactions across stimu-
lus dimensions. Two important challenges arise in testing
this hypothesis. First, traditional 1-dimensional tuning curves
are insufficient, as interactions between dimensions must
also be considered. Second, the use of multiple linear re-
gression methods is not appropriate, given the nonlinear
dependence of the cortical response on stimulus dimen-
sions (e.g., nonlinear level tuning). Thus, an appropriate
method should blend the ability to model interactions pos-
sessed by traditional linear models with nonlinear tuning
curves. Here, we apply the generalized additive model
(GAM) to address these issues. The GAM is a powerful
method for performing nonlinear regression in statistics
(Hastie and Tibshirani, 1991; Hastie et al., 2011). It can
be thought of as an extension of the linear model (LM) and
the generalized linear model (GLM) to allow a more flexible
nonlinear dependence on stimulus dimensions. While the
LM and the GLM have been widely applied to characterize
sensory neurons (Klein et al., 2000; Theunissen et al., 2000;
Depireux et al., 2001; Theunissen et al., 2001; Calabrese
et al., 2011), the GAM remains underutilized in neuroscience.
The objective of this study is to demonstrate the capacity of
the GAM to uncover interactions between stimulus dimen-
sions that cannot be revealed by more traditional
1-dimensional tuning curves, and to quantitatively charac-
terize such interactions.

Materials and Methods
Experimental data
The quantitative methods in this paper were applied to
experimental data collected by Chambers et al. (2014). An
EA was used for online stimulus optimization based on
single-unit spike feedback in the primary auditory cortex
(A1) of awake, passively listening mice. Multichannel sili-
con probes (Neuronexus) were surgically implanted into
A1 (located with functional mapping to reveal the charac-
teristic tonotopic gradient) of male BCA/CaJ mice 8-10
weeks of age. At least 48 hours after implantation, the
mice underwent recording sessions, during which a series
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of acoustic stimuli were presented by the EA and the
responses from a well-isolated single unit from one of the
16 channels were recorded and analyzed online in order
to drive the algorithm. The EA explored an acoustic space
consisting of the following: center frequency (CF; 4-64
kHz in 0.1 octave increments), intensity (I; 10-60 dB in 10
dB increments), spectral bandwidth (BW; pure tone, 1.25
octave band in 0.25 octave increments), sinusoidal am-
plitude modulation frequency (AM; unmodulated [0 Hz],
70 Hz in 10 Hz increments), and speaker location (L; all
permutations of left, right, top, and center). Acoustic stim-
uli were presented for 400 ms with 600 ms between each,
and the firing rate was calculated during the entire stim-
ulus window (0-400 ms). Each run of the EA search pro-
cedure began with 50 stimuli selected at random from the
pool of 177,120 potential stimuli. Each stimulus was pre-
sented twice during the session. At the end of each
generation of 50 stimuli, the stimuli were rank-ordered
with respect to firing rate responses. The top 10 were
used as “breeders” for the next generation such that their
“offspring” were created by randomly shifting at least one
acoustic dimension to a neighboring value. The most
effective stimulus from the first generation was termed the
“yardstick” and was repeated in all subsequent genera-
tions to estimate the effect of adaptation across genera-
tions. After the first generation, each generation consisted
of 39 breeder-based, 1 yardstick, and 10 randomly selected
stimuli from the stimulus pool to avoid focusing on local
maxima. The maximum response magnitude was the max-
imum value of the firing rate over 6 generations of the EA for
each neuron. For some single units, two runs of the EA were
performed in order to compare the convergence from inde-
pendent starting points. Results by Chambers et al. (2014)
successfully showed the ability of EAs to converge on stimuli
that maximized the firing rate. The methods in this paper
further analyze the data gathered by the EA by quantifying
the relationship between the stimulus dimensions and the
neural response. Further experimental details can be found
in Chambers et al. (2014).

GAM
The GAM can be thought of as an extension of the LM and
the GLM that allows a more flexible nonlinear dependence
on stimulus dimensions. Here, the GAM is used to ex-
press average neural firing rate r as a sum of nonlinear
functions. In this study, 15 possible nonlinear function
terms are considered: 5 terms corresponding to individual
stimulus dimensions (CF, I, BW, AM, and L) and their 10
possible combination pairs, defined as “interaction
terms.” This may be represented as follows:

r � �0 � f1�x1� � · · · � f5�x5� � f6�x1, x2� � · · ·
� f15�x4, x5�

where the predicted neural response r, assumed to have
a normal distribution, is related to predictor variables xi

and their unique pairs. Here, xi represents 1 of the 5
stimulus dimensions, and fi is a smooth function, with
each of the 15 f terms individually determined.

Model selection
A GAM was developed for each of n � 50 neurons using
an iterative algorithm. GAM model training was performed
on all stimuli presented during the EA. First, we performed
an exhaustive search of all 32 possible models consisting
only of individual stimulus dimensions. Because each of
these models had a distinct number of free parameters,
we used the Akaike Information Criterion (AIC) to deter-
mine the best model (Wood, 2006). In model selection,
AIC considers the tradeoff between goodness of fit and
complexity, with a lower AIC value indicating a better
model. The lowest AIC value was used to determine the
best of 32 GAMs containing 1-5 “main” dimensions. We
then expanded this initial GAM by testing GAMs that
contained these main dimensions and all of their possible
interaction terms (up to 1024 possible models). From this
family of possible models for each neuron, we selected
the final overall best GAM as the one with the lowest AIC
value. The median adjusted r2 value of the 50 final GAMs
was 0.50, with values ranging from 0.11 to 0.89.

Significant dimensions and interactions
For each neuron’s final GAM, the significance of the con-
tribution of each term was analyzed. Significant terms
were defined as those with p � 0.05. The number of
significant interaction terms and the total number of sig-
nificant terms were quantified for each neuron. The sig-
nificant terms were summarized using a matrix where
entries on the diagonal indicate the significance of main
dimensions and entries on the upper triangle indicate the
interaction terms. To quantify the contribution of interac-
tion terms to the overall accuracy of a neuron’s GAM, the
interaction terms were subtracted from the model, and
the adjusted r2 value was recalculated.

Visualization
A neuron’s entire “response space” was visualized by either a
1-dimensional “response curve” or a 2-dimensional “response
surface.” One-dimensional response curves were generated by
holding all other dimensions at their median values. Confidence
intervals on 1-dimensional plots were defined as �2� the SE.
To visualize interactions, we plotted a neuron’s 2-dimensional
response surfaces, fixing all other dimensions at their median
values. The response surface effectively expresses the firing
rate as a function of two main dimensions and one interaction
term as follows:

r � �0 � f1�x1� � f2�x2� � f3�x1, x2�

GAM fitting and visual analysis were performed using
the mgcv package in R (Wood, 2006). This software con-
strained the response spaces to be smooth using penal-
ized regression splines and generalized cross-validation.

Quantifying adaptation
Because the EA progressively converges on a single opti-
mum stimulus, it is possible that the accuracy of the GAMs
may be impacted by adaptation. In evaluating this possibil-
ity, we quantified adaptation as the percent difference in
neural firing rate between the first and final presentations of
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the yardstick stimulus. Adaptation to the yardstick stimulus
was a 46.4 � 36.4% decrease in firing rate.

Results
Presence of significant interaction terms in A1
Figure 1 shows an example comparison between two
neurons and their dependency on CF and I. Although both
neurons are significantly driven by CF and I as individual
dimensions, only the second (Fig. 1D-F) is impacted by a
significant interaction term between these two. The first
neuron appears to follow a tuning curve with respect to

frequency and an inverse relationship with intensity (Fig.
1B), and these 1-dimensional trends are reflected in the
2-dimensional response surface (Fig. 1C). However, with
the inclusion of an interaction term, the response surface
of the second neuron does not have such obvious rela-
tionships to its individual dimensions (Fig. 1E,F).

Figure 2 further explores the impact of an interaction
term on a neuron’s response space. We separated the
firing rate of a single neuron whose GAM has an interac-
tion term between CF and I into individual dimension
terms and an interaction term, which add together to

Figure 1. Presence of an interaction term. Significance matrices, 1-dimensional response curves, and CF-I response surface of (A-C)
Neuron #4 and (D-F) Neuron #36. A, D, Significance matrices represent significant (p � 0.05, shaded dark) individual dimensions on the
diagonal and interaction terms in the upper triangle. (The lower triangle is symmetric to the upper triangle and not shaded.) Red box
represents the terms being considered in the 1- and 2-dimensional visualizations. B, E, One-dimensional response curve of each neuron
with respect to CF (left) and I (right). Dashed lines indicate the confidence interval as �2� SE. C, F, CF-I response surface of each neuron.

Figure 2. Example impact of interaction term on neuron response space. The CF-I response surface of an example neuron is visually
separated into three components. For the expression, r � �0 � f1(x1) � f2(x2) � f3(x1, x2), x1 is CF, x2 is I, f1 and f2 are individual
dimension terms, and f3 is an interaction term. A, Individual dimension terms (f1 � f2). B, Interaction term (f3). C, Neuron response
offset by intercept (r – �0): that is (A) � (B) � (C).
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create the overall modeled response. Inclusion of an in-
teraction term appears to capture complexities of the
neuron’s response that are missed when only individual
dimensions are considered. To quantify this, adjusted r2

values are calculated for each GAM and then recalculated
after dropping all interaction terms from this GAM. Such a
removal of interaction terms causes a decrease in ad-
justed r2 from 0.50 � 0.19 to 0.29 � 0.16 with a median
decrease in accuracy of 37.4% (data not shown). As
shown in Figure 3, A1 neurons have the potential to
exhibit dependence on many interaction terms, which

highlights a level of complexity of neuronal response that
cannot be captured when only considering individual di-
mensions.

Population responses
Figure 4 summarizes the dependence of A1 responses
across the population. Of the 5 individual dimension terms
considered, CF was the most common, significantly mod-
ulating the firing rate of 100% of sample neurons. This
was followed by I (76.0%), BW (68.0% each), AM (62.0%),
and L (34.0%) (Fig. 4A). GAMs produced for A1 neurons

Figure 3. A cortical neuron with multiple significant interaction terms. The significance matrix (top left) of Neuron #50 represents 5 significant
interaction terms (p � 0.05). The response surfaces of these 5 terms are shown as follows: CF-I, CF-BW, CF-L, I-BW, and BW-AM.

Figure 4. Population analysis of A1 neurons. A, Percent of neurons driven by each significant term. Red represents highest value
(100%). Green represents lowest value (10%). Lower triangle is symmetric to upper triangle and is left blank. B, Histogram of number
of significant interaction terms per neuron. Median number of significant interaction terms was 2, shown by dashed vertical line.
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had 2.4 � 1.9 interaction terms and 5.8 � 2.6 total
significant terms (Fig. 4B). Of the 50 neurons analyzed,
only 7 had no significant interaction terms.

Discussion
EAs have long been recognized as a potentially powerful
tool and applied successfully to characterize sensory pro-
cessing of multidimensional stimuli in a handful of studies
(Bleeck et al., 2003; Yamane et al., 2008; Carlson et al.,
2011; Hung et al., 2012; DiMattina and Zhang, 2013;
Chambers et al., 2014). However, some significant barri-
ers have prevented the widespread use of EAs. First, it is
not entirely clear whether it is strictly necessary to probe
the full multidimensional space of stimuli (e.g., using an
EA) or whether adequate information can be obtained by
exploring each dimension individually. Second, quantita-
tive methods for analyzing the multidimensional data sets
resulting from the EA are lacking. In this study, we applied
the GAM to address these issues.

Previous quantitative methods for characterizing corti-
cal responses have included the LM and GLM. A specific
instance of the LM, the STRF, has been applied exten-
sively to investigate cortical responses (Klein et al., 2000;
Theunissen et al., 2000, 2001; Depireux et al., 2001;
Calabrese et al., 2011), and the GLM has extended this
approach (Calabrese et al., 2011). Other studies have
indicated that cortical STRFs may not be separable (De-
pireux et al., 2001; Sen et al., 2001; Linden et al., 2003)
and that cortical neurons can display nonlinear tone-tone
interactions (Shamma et al., 1993; Nelken et al., 1994;
Suga, 1994; Calford and Semple, 1995; Brosch and
Schreiner, 1997; Sutter et al., 1999; Kadia and Wang,
2003), suggestive of interactions across multiple stimulus
dimensions. Although these studies have revealed as-
pects of cortical processing, they have been limited in two
important ways. First, these studies did not quantify in-
teractions across more than 2 stimulus dimensions ex-
plicitly. Second, the LM and GLM are limited in their ability
to capture strong and diverse patterns of nonlinearities
evident in cortical neurons (Theunissen et al., 2000; Bar-
Yosef et al., 2002; Machens et al., 2004; Sadagopan and
Wang, 2009). These limitations can be surpassed, in prin-
ciple, by using information theoretic techniques for charac-
terizing cortical neurons, such as maximally informative
dimensions (Sharpee et al., 2004; Atencio et al., 2008,
2009,2012). However, this approach has the disadvantage
that it is highly data intensive and limited by the “curse of
dimensionality” (i.e., the difficulty of searching for optimal
stimuli in a high dimensional stimulus space) and is therefore
difficult to apply for multidimensional stimuli. Thus, there
continues to be a need in the field for quantitative methods
that are able to characterize the neural coding of multidi-
mensional stimuli, including nonlinearities.

The GAM extends the LM and GLM by allowing the
neural response (in our case, the average firing rate) of the
neuron to be expressed as sum of nonlinear functions
(Hastie and Tibshirani, 1991; Hastie et al., 2011). These
nonlinear functions are constrained to be smooth but can
otherwise be highly flexible in form. The importance of this
feature of the GAM can be appreciated by considering the

dependence of the response on the stimulus dimensions.
For example, the dependence of the firing rate on fre-
quency is highly nonlinear and can take a on a wide
diversity of shapes in cortex. The dependence of firing
rate on intensity can be quasilinear up to a certain level in
some cases but is often sigmoidal or nonmonotonic over
the relevant range of intensities. The GAM allows a flexible
way to model such relationships. Moreover, the GAM also
allows modeling interactions between stimulus dimen-
sions, by including interaction terms (see Materials and
Methods).

The GAM results confirmed familiar aspects of cortical
responses but also revealed novel aspects. For example, we
found that all neurons in our dataset were significantly mod-
ulated by frequency, consistent with the fact that frequency
is a fundamental dimension for cortical responses (Mer-
zenich et al., 1975; Guo et al., 2012). We also found that,
while many cortical neurons were sensitive to sound inten-
sity, a proportion of cortical neurons in our data were not
significantly modulated by intensity, consistent with results
showing the emergence of neurons robust to intensity vari-
ations at the cortical level (Billimoria et al., 2008; Sadagopan
and Wang, 2008; Chambers et al., 2014). In addition to these
2 fundamental dimensions, cortical neurons also showed
sensitivity to BW, AM, and L, with decreasing proportions of
cortical neurons sensitive to each.

Most importantly, the GAM revealed that cortical neu-
rons can be sensitive to interactions across stimulus di-
mensions. On average, cortical neurons were sensitive to
�3 interactions across different stimulus dimensions in a
5-dimensional stimulus space. These results indicate that
low dimensional characterizations of cortical neurons,
which explore 1 or 2 dimensions, while fixing others to
arbitrary values, are likely to miss important aspects of
cortical response. This strongly motivates the use of EA in
characterizing responses in sensory cortex using multidi-
mensional stimuli.

A potential challenge facing EAs is adaptation in firing
rate. Thus, adaptation may also have influenced the qual-
ity of the GAM. However, we found no significant corre-
lation between the amount of adaptation and the
performance (adjusted r2) of the GAM (p � 0.152, corre-
lation coefficient � 0.2059). One potential explanation is
that, with the exception of a single “yardstick” stimulus,
stimuli in the EA were rarely repeated exactly. Previous
studies have shown that adaptation in auditory cortex can
be highly stimulus specific (Nelken, 2014). This may have
mitigated the effects of adaptation on the EA and GAM.

Overall, our results suggest that primary auditory cortex
integrates information across multiple stimulus dimen-
sions both at the single neuron level, through multiple
interactions within single neurons, and at the population
level, through a diverse range of interactions across dif-
ferent neurons. Object formation likely requires several
hierarchical steps to accomplish. Although this process
likely is not completed within A1, the interactions we
observed may be a key computation toward object for-
mation. Future experimental and theoretical studies inves-
tigating the synaptic and network mechanisms underlying
interactions, and the impact of interactions on single neu-
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ron and population coding should clarify whether and how
such interactions contribute to the cortical substrate for
complex object recognition.

Future Directions
Several additional future directions merit further explora-
tion. First, the GAM analysis performed here was run on
the collected dataset using the EA after the experiments
were complete. In the future, it would be interesting to
apply the GAM online as the data are collected. Second,
the GAM and EA were applied to a specific family of
5-dimensional stimuli. In principle, this approach could be
applied to any family of sounds that can be parameterized
systematically. For example, a similar paradigm could be
used with parametrically specified multitone combina-
tions or ripple stimuli. However, it remains unclear how
high the dimensionality of the stimulus space can be to
still remain tractable for exploration with the EA, within
typical time limits for data collection. Third, the GAM as
applied here takes into account encoding by the firing rate
only ignoring temporal structure in the responses. The
vast majority of literature on GAMs is for static inputs, with
a few extensions for dynamic inputs. In the future, it would
be interesting to extend the GAM to account for temporal
structure in neural responses.

References
Atencio CA, Sharpee TO, Schreiner CE (2008) Cooperative nonlin-

earities in auditory cortical neurons. Neuron 58:956-966. CrossRef
Medline

Atencio CA, Sharpee TO, Schreiner CE (2009) Hierarchical compu-
tation in the canonical auditory cortical circuit. Proc Natl Acad Sci
U S A 106:21894-21899. CrossRef Medline

Atencio CA, Sharpee TO, Schreiner CE (2012) Receptive field dimen-
sionality increases from the auditory midbrain to cortex. J Neuro-
physiol 107:2594-2603. CrossRef Medline

Bar-Yosef O, Rotman Y, Nelken I (2002) Responses of neurons in cat
primary auditory cortex to bird chirps: effects of temporal and
spectral context. J Neurosci 22:8619-8632. Medline

Billimoria CP, Kraus BJ, Narayan R, Maddox RK, Sen K (2008)
Invariance and sensitivity to intensity in neural discrimination of
natural sounds. J Neurosci 28:6304-6308. CrossRef Medline

Bleeck S, Patterson RD, Winter IM (2003) Using genetic algorithms to
find the most effective stimulus for sensory neurons. J Neurosci
Methods 125:73-82. CrossRef Medline

Brosch M, Schreiner CE (1997) Time course of forward masking
tuning curves in cat primary auditory cortex. J Neurophysiol 77:
923-943. Medline

Calabrese A, Schumacher JW, Schneider DM, Paninski L, Woolley
SM (2011) A generalized linear model for estimating spectrotem-
poral receptive fields from responses to natural sounds. PLoS One
6:e16104. CrossRef Medline

Calford MB, Semple MN (1995) Monaural inhibition in cat auditory
cortex. J Neurophysiol 73:1876-1891. Medline

Carlson ET, Rasquinha RJ, Zhang K, Connor CE (2011) A sparse
object coding scheme in area V4. Curr Biol 21:288-293. CrossRef
Medline

Chambers AR, Hancock KE, Sen K, Polley DB (2014) Online stimulus
optimization rapidly reveals multidimensional selectivity in auditory
cortical neurons. J Neurosci 34:8963-8975. CrossRef Medline

Depireux DA, Simon JZ, Klein DJ, Shamma SA (2001) Spectro-
temporal response field characterization with dynamic ripples in
ferret primary auditory cortex. J Neurophysiol 85:1220-1234. Med-
line

DiMattina C, Zhang K (2013) Adaptive stimulus optimization for
sensory systems neuroscience. Front Neural Circuits 7:101.
CrossRef Medline

Guo W, Chambers AR, Darrow KN, Hancock KE, Shinn-Cunningham
BG, Polley DB (2012) Robustness of cortical topography across
fields, laminae, anesthetic states, and neurophysiological signal
types. J Neurosci 32:9159-9172. CrossRef Medline

Hastie T, Tibshirani R (1991) Generalized additive models. London:
Chapman & Hall.

Hastie T, Tibshirani R, Friedman J (2011) The elements of statistical
learning, Ed 2. New York: Springer.

Hung CC, Carlson ET, Connor CE (2012) Medial axis shape coding in
macaque inferotemporal cortex. Neuron 74:1099-1113. CrossRef
Medline

Kadia SC, Wang X (2003) Spectral integration in A1 of awake pri-
mates: neurons with single- and multipeaked tuning characteris-
tics. J Neurophysiol 89:1603-1622. CrossRef Medline

Klein DJ, Depireux DA, Simon JZ, Shamma SA (2000) Robust spec-
trotemporal reverse correlation for the auditory system: optimizing
stimulus design. J Comput Neurosci 9:85-111. Medline

Linden JF, Liu RC, Sahani M, Schreiner CE, Merzenich MM (2003)
Spectrotemporal structure of receptive fields in areas AI and AAF
of mouse auditory cortex. J Neurophysiol 90:2660-2675. CrossRef
Medline

Machens CK, Wehr MS, Zador AM (2004) Linearity of cortical recep-
tive fields measured with natural sounds. J Neurosci 24:1089-
1100. CrossRef Medline

Merzenich MM, Knight PL, Roth GL (1975) Representation of cochlea
within primary auditory cortex in the cat. J Neurophysiol 38:231-
249. Medline

Nelken I (2014) Stimulus-specific adaptation and deviance detection
in the auditory system: experiments and models. Biol Cybern
108:655-663. CrossRef Medline

Nelken I, Prut Y, Vaadia E, Abeles M (1994) Population responses to
multifrequency sounds in the cat auditory cortex: one- and two-
parameter families of sounds. Hear Res 72:206-222. Medline

Sadagopan S, Wang X (2008) Level invariant representation of
sounds by populations of neurons in primary auditory cortex. J
Neurosci 28:3415-3426. CrossRef Medline

Sadagopan S, Wang X (2009) Nonlinear spectrotemporal interactions
underlying selectivity for complex sounds in auditory cortex. J
Neurosci 29:11192-11202. CrossRef Medline

Sen K, Theunissen FE, Doupe AJ (2001) Feature analysis of natural
sounds in the songbird auditory forebrain. J Neurophysiol 86:
1445-1458. Medline

Shamma SA, Fleshman JW, Wiser PR, Versnel H (1993) Organization
of response areas in ferret primary auditory cortex. J Neurophysiol
69:367-383. Medline

Sharpee T, Rust NC, Bialek W (2004) Analyzing neural responses to
natural signals: maximally informative dimensions. Neural Comput
16:223-250. CrossRef Medline

Suga N (1994) Processing of auditory information carried by species-
specific complex sounds. In: The cognitive neurosciences (Gaz-
zaniga MS, ed), pp 295-313. Cambridge, MA: Massachusetts
Institute of Technology.

Sutter ML, Schreiner CE, McLean M, O’Connor KN, Loftus WC
(1999) Organization of inhibitory frequency receptive fields in cat
primary auditory cortex. J Neurophysiol 82:2358-2371. Medline

Theunissen FE, Sen K, Doupe AJ (2000) Spectral-temporal receptive
fields of nonlinear auditory neurons obtained using natural sounds.
J Neurosci 20:2315-2331.

Theunissen FE, David SV, Singh NC, Hsu A, Vinje WE, Gallant JL
(2001) Estimating spatio-temporal receptive fields of auditory and
visual neurons from their responses to natural stimuli. Network
12:289-316. Medline

Wood S (2006) Generalized additive models: an introduction with R.
London: Chapman and Hall/CRC.

Yamane Y, Carlson ET, Bowman KC, Wang Z, Connor CE (2008) A
neural code for three-dimensional object shape in macaque infero-
temporal cortex. Nat Neurosci 11:1352-1360. CrossRef Medline

New Research 7 of 7

July/August 2016, 3(4) e0124-16.2016 eNeuro.org

http://dx.doi.org/10.1016/j.neuron.2008.04.026
http://www.ncbi.nlm.nih.gov/pubmed/18579084
http://dx.doi.org/10.1073/pnas.0908383106
http://www.ncbi.nlm.nih.gov/pubmed/19918079
http://dx.doi.org/10.1152/jn.01025.2011
http://www.ncbi.nlm.nih.gov/pubmed/22323634
http://www.ncbi.nlm.nih.gov/pubmed/12351736
http://dx.doi.org/10.1523/JNEUROSCI.0961-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18562600
http://dx.doi.org/10.1016/S0165-0270(03)00040-2
http://www.ncbi.nlm.nih.gov/pubmed/12763233
http://www.ncbi.nlm.nih.gov/pubmed/9065859
http://dx.doi.org/10.1371/journal.pone.0016104
http://www.ncbi.nlm.nih.gov/pubmed/21264310
http://www.ncbi.nlm.nih.gov/pubmed/7623087
http://dx.doi.org/10.1016/j.cub.2011.01.013
http://www.ncbi.nlm.nih.gov/pubmed/21315595
http://dx.doi.org/10.1523/JNEUROSCI.0260-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/24990917
http://www.ncbi.nlm.nih.gov/pubmed/11247991
http://www.ncbi.nlm.nih.gov/pubmed/11247991
http://dx.doi.org/10.3389/fncir.2013.00101
http://www.ncbi.nlm.nih.gov/pubmed/23761737
http://dx.doi.org/10.1523/JNEUROSCI.0065-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/22764225
http://dx.doi.org/10.1016/j.neuron.2012.04.029
http://www.ncbi.nlm.nih.gov/pubmed/22726839
http://dx.doi.org/10.1152/jn.00271.2001
http://www.ncbi.nlm.nih.gov/pubmed/12626629
http://www.ncbi.nlm.nih.gov/pubmed/10946994
http://dx.doi.org/10.1152/jn.00751.2002
http://www.ncbi.nlm.nih.gov/pubmed/12815016
http://dx.doi.org/10.1523/JNEUROSCI.4445-03.2004
http://www.ncbi.nlm.nih.gov/pubmed/14762127
http://www.ncbi.nlm.nih.gov/pubmed/1092814
http://dx.doi.org/10.1007/s00422-014-0585-7
http://www.ncbi.nlm.nih.gov/pubmed/24477619
http://www.ncbi.nlm.nih.gov/pubmed/8150737
http://dx.doi.org/10.1523/JNEUROSCI.2743-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18367608
http://dx.doi.org/10.1523/JNEUROSCI.1286-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19741126
http://www.ncbi.nlm.nih.gov/pubmed/11535690
http://www.ncbi.nlm.nih.gov/pubmed/8459273
http://dx.doi.org/10.1162/089976604322742010
http://www.ncbi.nlm.nih.gov/pubmed/15006095
http://www.ncbi.nlm.nih.gov/pubmed/10561411
http://www.ncbi.nlm.nih.gov/pubmed/11563531
http://dx.doi.org/10.1038/nn.2202
http://www.ncbi.nlm.nih.gov/pubmed/18836443

	Interactions across Multiple Stimulus Dimensions in Primary Auditory Cortex
	Introduction
	Materials and Methods
	Experimental data
	GAM
	Model selection
	Significant dimensions and interactions
	Visualization
	Quantifying adaptation

	Results
	Presence of significant interaction terms in A1
	Population responses

	Discussion
	Future Directions


	References

