
Cognition and Behavior

Proactive Control: Neural Oscillatory Correlates of
Conflict Anticipation and Response Slowing

Andrew Chang,1 Jaime S. Ide,2 Hsin-Hung Li,1 Chien-Chung Chen,1,3 and Chiang-Shan R. Li2,4,5,6

DOI:http://dx.doi.org/10.1523/ENEURO.0061-17.2017

1Department of Psychology, National Taiwan University, Taipei, Taiwan 10617, 2Department of Psychiatry, Yale
University, New Haven, CT 06520, 3Center for Neurobiology and Cognitive Science, National Taiwan University,
Taipei, Taiwan 10617, 4Department of Neuroscience, Yale University, New Haven, CT 06520, 5Interdepartmental
Neuroscience Program, Yale University, New Haven, CT 06520, 6Beijing Huilongguan Hospital, Beijing 100096, China

Abstract
Proactive control allows us to anticipate environmental changes and adjust behavioral strategy. In the laboratory,
investigators have used a number of different behavioral paradigms, including the stop-signal task (SST), to
examine the neural processes of proactive control. Previous functional MRI studies of the SST have demonstrated
regional responses to conflict anticipation—the likelihood of a stop signal or P(stop) as estimated by a Bayesian
model—and reaction time (RT) slowing and how these responses are interrelated. Here, in an electrophysiological
study, we investigated the time–frequency domain substrates of proactive control. The results showed that
conflict anticipation as indexed by P(stop) was positively correlated with the power in low-theta band (3–5 Hz) in
the fixation (trial onset)-locked interval, and go-RT was negatively correlated with the power in delta-theta band
(2–8 Hz) in the go-locked interval. Stimulus prediction error was positively correlated with the power in the
low-beta band (12–22 Hz) in the stop-locked interval. Further, the power of the P(stop) and go-RT clusters was
negatively correlated, providing a mechanism relating conflict anticipation to RT slowing in the SST. Source
reconstruction with beamformer localized these time–frequency activities close to brain regions as revealed by
functional MRI in earlier work. These are the novel results to show oscillatory electrophysiological substrates in
support of trial-by-trial behavioral adjustment for proactive control.
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Introduction
The ability to make plans and proactively adjust our

behavior is critical to survival. Proactive control has been

studied with many different behavioral paradigms in
which participants are cued to upcoming events (Vink
et al. 2005; Brass and Haggard, 2007, Chikazoe et al.
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Significance Statement

Proactive control is central to adaptive behavior. Many functional MRI studies have dissected the neural
basis of conflict processing and behavioral adjustment, but evidence from electrophysiology is fragmentary.
Here, by combining EEG and a stop-signal task, we demonstrated distinct frequency domain substrates of
conflict anticipation, RT slowing, and stimulus prediction error. In particular, neural activities of conflict
anticipation preceded RT slowing, and the power of these activities were correlated, in support of proactive
control of behavior. Further, beamformer analysis localized the sources of these activities as revealed by
functional MRI. These new findings complement the literature by specifying the electrophysiological
correlates of trial-by-trial response control within a single paradigm.

New Research

May/June 2017, 4(3) e0061-17.2017 1–14

http://orcid.org/0000-0001-6745-4435
http://orcid.org/0000-0003-3245-2071
http://orcid.org/0000-0002-9393-1212
http://dx.doi.org/10.1523/ENEURO.0061-17.2017


2009; Kühn et al. 2009; Jahfari et al. 2010; Horga et al.
2011; Leunissen et al. 2016). In the stop-signal task (SST),
for instance, frequent motor responses are to be inter-
rupted occasionally by a stop signal, and increased stop
signal probability bolsters proactive control, as shown in
slower response time and delayed motor cortical activity
(Jahfari et al. 2010). Participants typically demonstrate
slower reaction time (RT) after a stop signal, or postsignal
slowing (PSS), in the SST. As investigated extensively in
behavioral studies, PSS does not reflect the surprise ef-
fects of stop signal but rather a global, contextual mod-
ulation of signal expectancy on motor response (Morein-
Zamir et al. 2007; Bissett and Logan, 2011). In diffusion
models of SST, response thresholds increased when stop
signals were expected to occur, and participants made
response-strategy adjustments on a trial-by-trial basis,
suggesting proactive adjustment to changing environ-
ments (Verbruggen and Logan, 2009b). On the other
hand, the neural mechanisms underlying trial-by-trial be-
havioral adjustment have been examined only recently
under a formal computational framework.

In a previous functional MRI (fMRI) study of the SST,
authors applied a dynamic Bayesian model to estimate
trial-by-trial probability of the stop signal—P(stop)—and
showed that higher P(stop) is associated with prolonged
go trial RT, indicating proactive control of motor response
(Hu et al. 2015a). The gist of the study was to identify and
distinguish regional brain activations specific to signal
anticipation and response slowing as a result of the an-
ticipation. In modeling fMRI signals at trial and target
onsets, they showed that the anterior presupplementary
motor area (pre-SMA) responds to increased P(stop) in
correlation with activations of the posterior pre-SMA and
bilateral anterior insula during prolonged RT. These find-
ings associate conflict anticipation with its motor conse-
quence.

Many studies identified time-domain event-related
potentials (ERPs) in association with proactive control,
including processes related to switch preparation or an-
ticipatory attention (Karayanidis and Jamadar, 2014; An-
gelini et al. 2016; Di Russo et al. 2016; Langford et al.
2016). Neural oscillations represent frequency-domain

electrophysiological excitabilities of neuronal populations,
with oscillations in different frequencies reflecting dy-
namic information exchange between distinct functional
networks (Fries, 2005). Electroencephalogram (EEG) stud-
ies have shown that neural oscillations measured above
the medial-frontal cortex are associated with cognitive
control (Cavanagh and Frank, 2014; Cohen, 2014a). In
Simon tasks, the power in theta band (�3–8 Hz) in-
creased and positively predicted RT in high conflict trials
(Pastötter et al. 2010, 2013; Cohen and Cavanagh, 2011;
Nigbur et al. 2011; Cohen and Donner, 2013; Cohen and
Ridderinkhof, 2013; Clayton et al. 2015). Proactive and
reactive controls were each associated with theta oscilla-
tions originating from distinct cortical networks during
task switching (Cooper et al. 2015). In contrast, delta band
(�1–3 Hz) power was associated with shorter RT during
error trials in the Simon task (Cohen and van Gaal, 2014).
Proactive versus reactive control modulated the power of
delta oscillations differently in an SST (Lavallee et al.
2014). Alpha (�8–13 Hz) power, localized in the superior
frontal cortex, was associated with attentional control to
inhibit irrelevant sensory inputs in a flanker task (Suzuki
and Shinoda, 2015). In a magnetoencephalography study
of eye movement control, alpha to low beta bands
(�10–18 Hz) increased in power in the frontal eye field
during suppression of a prepotent saccade compared
with generation of an automatic saccade, an effect that
positively predicted performance accuracy (Hwang et al.
2016). Together, these studies characterized oscillatory
correlates of various forms of proactive control, but the
frequency domain processes of conflict anticipation and
response control remain to be dissociated and related to
behavioral performance.

To fill this gap of research, we used a dynamic Bayesian
model (Yu and Cohen, 2009) to quantify the extent of
conflict anticipation—belief of an upcoming stop signal—
trial by trial, on the basis of trial history. To investigate the
neural oscillatory basis of proactive control, we identified
the EEG time–frequency correlates of conflict anticipation
and RT slowing in trial-by-trial analyses and used beam-
forming methods to localize the sources of these corre-
lates. Specifically, we hypothesized that the time–
frequency correlates of conflict anticipation should
precede in time and correlate in power with those of RT
slowing.

Methods
Participants

Eighteen healthy adults (9 males, 22.6 � 1.3 years of
age), who were all students and naive to the purposes of
the experiment, participated in the study. All provided
written consent and were financially compensated for
their participation, in accordance with the guideline of
Helsinki Declaration and a protocol approved by the Re-
search Ethics Committee of National Taiwan University.

Behavioral task
We used a simple RT task of the stop signal paradigm

(Chang et al., 2014; Chang et al., 2015; Li et al., 2008;
Verbruggen and Logan, 2009a). There were two trial
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types, “go” and “stop,” randomly intermixed in presenta-
tion with a ratio of �3:1. The intertrial interval was 2 s. A
small white dot (fixation) appeared at the center of a black
screen to engage attention at the beginning of every trial.
After an interval ranging randomly from 1 to 3 s (the
foreperiod), the dot turned into a circle (�2° of visual
angle), which served as a go signal. The participants were
instructed to quickly press a button at go-signal onset but
not before. The circle vanished either at button press or 1
s after go-signal onset, whichever came first, and the trial
terminated. A premature button press before go-signal
onset also terminated the trial. In the stop trial, an addi-
tional X, the stop signal, replaced the go signal. The
participants were instructed to withhold button press on
seeing the stop signal. The trial terminated at the button
press or 1 s after stop-signal onset. The duration between
go- and stop-signal onsets, or the stop-signal delay
(SSD), was determined by a staircase procedure. The
one-up-one-down procedure (Levitt, 1971) started with an
SSD of 200 ms, and increased and decreased by 64 ms
each after a successful and failed stop trial. By increasing
and decreasing each SSD after a stop success and error,
the staircase procedure allows participants to succeed in
approximately half of the stop trials.

The task was divided into four sessions, each with 100
trials and lasting no longer than 8 min, with a short break
in between sessions. There were �5 min of practice on
the task before the experiments to ensure that partici-
pants understood the task. Participants were instructed to
“respond to the go signal quickly while watching out for
the stop signal, which might appear occasionally.”

Bayesian modeling of the sequential effect
We used a dynamic Bayesian model (Yu and Cohen,

2009) to estimate the belief of an upcoming stop signal on
each trial, P(stop), based on preceding stimulus history. In
the model, previous trial information is encoded in the
prior distribution. In every trial, the posterior distribution is
carried over to the next trial as a prior. Although the stop
and go trials were randomized in presentation, partici-
pants learned from local trial structure and updated their
belief of P(stop) and adjusted RT on a trial-by-trial basis.
P(stop) reflects participants’ estimation of the trial-by-trial
likelihood of the stop signal on the basis of the Bayesian
model, and it is computed independent of the RT. A
sequential effect is defined as the linear correlation be-
tween P(stop) and RT for all go trials (Ide et al. 2015).

In the model, participants have the knowledge that
each trial has a probability rk for being a stop trial and 1�rk

for being a go trial. Furthermore, the probability rk has a
chance � to be the same as rk–1 and 1 – � being resa-
mpled from a prior distribution �(rk).

With these generative assumptions, participants use
Bayesian inference to update their prior belief of seeing a
stop signal on trial k, p�rk�sk�1� based on the posterior of
the last trial p�rk�1�sk�1� given the last trial’s true category
(sk � 1 for stop trial, sk � 0 for go trial), where sk � {s1, . . .,
sk} is shorthand for all trials 1 through k. Specifically, given
that the posterior distribution was p�rk�1�sk�1� on trial k �
1, the prior distribution of stop signal in trial k is given by

p�rk�sk�1� � � � p�rk�1�sk�1� � �1 � �� � ��rk� ,

where the prior distribution �(rk) is a beta distribution with
prior mean pm and shape parameter sc, which were
reparameterized from the beta(a,b) distribution such that
pm � a/(a � b) and sc � (a � b), and the posterior
distribution is computed from the prior distribution and
the outcome according to Bayes’ rule:

p�rk�sk� � P�sk�rk� � p�rk�sk�1� .

The Bayesian estimate of the probability of trial k being
a stop trial—which we colloquially call P(stop)—given the
predictive distribution p�rk�sk�1� is expressed by

P(sk � 1|sk�1) � � P(sk � 1|rk) � P(rk |sk�1)drk

� � rk � P(rk |sk�1)drk � �rk |sk�1� .

We approximated the mean of the predictive distribu-
tion p�rk�sk�1� by the maximum a posteriori (MAP) esti-
mate r̂k � argmax

rk
p�rk�sk�1�. The proposition that the

predictive distribution is a mixture of the previous poste-
rior distributions and a generic prior distribution is essen-
tially equivalent to using a causal, exponential, linear filter
to estimate the current rate of stop trials (Yu and Cohen,
2009). In summary, for each participant, given a sequence
of observed go/stop trials and the three model parame-
ters {�, pm, sc}, we estimated P(stop) for each trial.
Generally speaking, � quantifies the weight given by the
participant to the previous trials (the magnitude of influence
from previous to current trial), pm is the mean of the fixed
belief of stop signal, and sc reflects how skewed the distri-
bution is around the mean. It is worth noting that the Markov
modeling approach (transition between the static and dy-
namic states) is assumed to be of the first order.

To obtain the best fit parameters for sequential effect in
each individual, we grid-searched for the parameters that
maximized the Pearson correlation between go-RT and
P(stop) using Matlab. The search space of model param-
eters were set to the following ranges: � � [0.02, 0.04, . . .,
0.98], pm � [0.01, 0.03, . . ., 0.49], and fixed sc � 10. For
the stop trials, we also quantified the prediction error (PE),
or Bayesian surprise, as |1 – P(stop)| (Ide et al. 2013).

Electroencephalography acquisition and data
preprocessing

The EEG was collected with a whole-head, 256-channel
geodesic EEG system with HydroCell Sensor Nets (Elec-
trical Geodesics). This system provides uniform spatial
sampling (�2 cm, sensor to sensor), covering the entire
scalp surface and extending 120° in all directions from the
vertex reference electrode. The EEG was amplified at a
gain of 1000 and recorded with a vertex physical refer-
ence. Signals were digitized at 500 Hz with a 16-bit
analog-to-digital converter, which allowed an amplitude
resolution of 0.076 	V. The computer administering the
task sent a digital trigger to the recording system at the
onset of fixation and go signal of every trial.
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The data were preprocessed by the following proce-
dures offline before statistical analysis with the Brain Elec-
trical Source Analysis (BESA) software package. First, the
raw data were filtered by a 0.7- to 100-Hz bandpass (FIR)
filter. Second, independent component analysis (ICA) de-
composition using an extended infomax algorithm (Lee
et al. 1999) was performed on the continuous EEG record-
ing of each session for each participant, and the channel-
time EEG data were projected into the component-time
EEG data in the ICA space, with PCA dimension reduction
excluding the independent components with �0.75% of
variance. ICA is a useful technique for artifact removal on
EEG recordings by spatially separating independent arti-
fact sources mixed with the brain activities of interest in
the surface EEG channels. Third, the components reflect-
ing artifact (identified by visual inspection), including eye
blinking, eye movement, electrocardiogram, and 60-Hz
powerline noise, were excluded. Fourth, the data of the
remaining components were projected back as ICA
artifact-removed 256-channel EEG data. Fifth, to identify
any remaining artifacts that were not removed by ICA, the
ICA artifact-removed data were epoched from –500 to
1000 ms, each time-locked to the onset time of fixation
signal or go signal. In the final step, the epochs with
voltage change exceeding 150 	V at any channel were
identified as containing artifact and excluded for further
analyses. As a result of the preprocessing, 85.9 � 15.0%
of the trials were included for further analyses.

Time–frequency decomposition
We examined EEG activities across time and frequen-

cies, which may reflect the activities of different neuronal
populations in association with distinct cognitive func-
tions. The Morlet wavelet transformation was computed
for each time point continuous on the ICA artifact-
removed 256-channel unfiltered EEG data with 59 loga-
rithmically spaced frequency bins between 2 and 50 Hz.
The wavelet was designed such that the half-maximum
width was equal to 1 period of the lowest frequency with
the width equal to 4 periods of the highest frequency,
linearly interpolated for each frequency bin in between.
Thus, EEG data were transformed into power at each
time–frequency bin. Subsequently, we segmented the time–
frequency data from –500 to 1000 ms into epochs, time-
locked to the onset of fixation signal, go signal, or stop
signal, and the power of each epoch was baseline cor-
rected to the mean power of the –300- to –100-ms period
for each frequency bin. We performed the time–frequency
decomposition before epoching the data, circumventing
the issue of edge artifact as can occur in time–frequency
decomposition on short EEG epochs. There was a buffer
zone of at least 4 s at the beginning and the end of each
continuous EEG recording.

Correlating time–frequency power with sequential
effect

We performed a Spearman rank correlation on the
power for each time–frequency bin with P(stop), go-RT, or
PE on the fixation (trial onset)-locked, go-locked, and
stop-locked interval across trials for each participant. To
examine within-subject correlations on P(stop) and EEG

across all participants, we used the group-averaged pa-
rameters {�, pm, sc} of individual Bayesian model that
maximized the sequential effect for each participant, ac-
cording to previous model-based studies (Camerer and
Ho, 1999; O’Doherty et al. 2004; Ide et al. 2015). Further,
we focused on the surface channel FCz (standard channel
montage from BESA), located at midfrontal areas, be-
cause previous EEG studies of conflict processing re-
ported activities mainly from the medial frontal cortex
(Cavanagh and Frank, 2014; Cohen, 2014a) and fMRI
studies described activations to conflict anticipation, RT
slowing, and prediction error in distinct areas of the me-
dial prefrontal cortex (Hu et al. 2015a).

To control for type I error of multiple comparisons, we
performed a nonparametric cluster-based permutation
test (Cohen, 2014b; Maris and Oostenveld, 2007) on the
2D time–frequency maps in two loops. In the first loop,
within each participant, we randomly permuted trial map-
ping between EEG data and behavioral responses for
1000 times and computed EEG–behavior correlation co-
efficient for each permutation as a null distribution for
each time–frequency bin. We computed the z-value of the
observed correlation coefficient relative to the null distri-
bution for each time–frequency bin—a z-map—to repre-
sent the EEG–behavior correlation for each participant
(Cohen, 2014b).

In the second loop, we tested the random effect hy-
pothesis of specific time–frequency bins showing consis-
tent EEG–behavior correlation across participants. First,
we used a two-tailed one-sample t test to examine
whether any time–frequency bins on the z-map were sig-
nificantly different from 0 across participants. Second, we
grouped adjacent time–frequency bins reaching a thresh-
old of p � 0.02, 0.005, or 0.001 into single clusters and
summed the t-value within each cluster into a cluster-level
statistic. Third, we built a permutation null distribution
with 2000 iterations from the observed z-maps, represent-
ing zero correlation across participants. Multiple compar-
isons were controlled by extracting the summed t-value of
the largest suprathreshold cluster of each iteration into
null distribution, and the final p-value (pperm) was com-
puted by ranking the clustered t-value in the real data
relative to the null distribution (Maris and Oostenveld,
2007), where the 2000 iterations of permutation divided
the pperm with a step size of 1/2000, ranging from 0 to 1.
The observed statistical power was estimated by repeat-
ing the permutation test 200 times and then taking the
percentage of obtaining pperm � 0.05 out of the 200 tests.

Beamformer source reconstruction
We used beamformer to estimate the source location of

the time–frequency activities of interest. As a signal-
processing technique to discriminate between signals ar-
riving from a location of interest and signals arriving from
other locations, beamformer is used to spatially filter
scalp-recorded EEG data to estimate the source power
for a specific location in the brain. Specifically, by con-
sidering signals generated from one specific voxel while
attenuating signals from other voxels, the distribution of
source power of the 3D brain is estimated by repeatedly
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constructing beamformer at each voxel (Green and Mc-
Donald, 2009). We used the multiple source beamformer
algorithms in BESA (Gross et al. 2001) to estimate the
source of the time–frequency cluster at the single-trial
level for non–phase-locked time–frequency activities. For
each voxel, the source power in the time–frequency clus-
ter of interest P is normalized by the source power in a
reference time–frequency cluster Pref as q:

q � �P/Pref � 1, for P 
 Pref ; or

q � 1 � �Pref/P, for P � Pref.

For a specific voxel, the magnitude of positive q repre-
sents the magnitude of P 
 Pref, whereas the magnitude
of negative q represents the magnitude of P � Pref.

We estimated a q-map for each individual cluster for
each participant. To reconstruct the sources of each
time–frequency cluster associated with the sequential ef-
fect, we median-split the trials based on P(stop) or go-RT
for each participant. We did not reconstruct the source of
PE owing to an insufficient number of stop trials available
for analysis (n � 100). We assigned beamformer power
source of the time–frequency cluster, each in the higher
and lower half of the behavioral index, as P and Pref,
respectively. That is, the voxels with largest positive and
largest negative q values are likely the source of the
time–frequency cluster correlates each of P(stop) and
go-RT, respectively.

We used the four-shell ellipsoidal model implemented
in BESA toolbox to solve the inverse problem. Although
our head model was not MRI-based and represented a
simplistic approximation to the realistic brain, empirical
simulations showed that the four-shell head model local-
izes the source with �1 cm of averaged errors (Cohen
et al. 1990; Cuffin et al. 1991), which is reasonably accu-
rate (Slotnick, 2004). The locations of all 256 channels
were provided by BESA for the 256-channel HydroCel
Geodesic Sensor Net.

To perform source localization at the group level, we
coregistered and normalized individual q-maps with affine
transformation to reduce misalignment among the im-
ages, and performed one-sample t tests. These analyses
were performed with Statistical Parametric Mapping
(SPM12, Wellcome Department of Imaging Neuroscience,
University College London, UK).

Results
Behavioral performance and sequential effect

The go success rate was 98.4 � 1.9% (mean � SD),
and go-RT was 405 � 64 ms across participants. The
stop success rate was 48.7 � 2.2%, suggesting the
success of the staircase procedure in tracking partici-
pants’ performance and eliciting errors in approximately
half of the stop trials. The RT of stop-error trials was 360
� 52 ms, which was significantly shorter than go-RT (t(17)

� 10.81, p � 0.001a). The critical SSD was computed by
a maximal likelihood procedure on the sequence of all
staircase-generated SSDs for each participant, and the
stop-signal reaction time (SSRT) was computed by sub-
tracting the critical SSD from the median go-RT for each

participant, based on the race model. The critical SSD
was 170 � 71 ms, and SSRT was 216 � 25 ms. These
behavioral outcome were within the range reported in
earlier studies (e.g., Logan et al. 1997; Li et al. 2008;
Verbruggen and Logan, 2008; Ide et al. 2013; Hu et al.
2015a; Schevernels et al. 2015; Langford et al. 2016).

We fitted a dynamic Bayesian model for the trial se-
quence of each participant (Fig. 1A), and the best-fitted
parameter values, with sc fixed at 10, were � � 0.78 �
0.14 (mean � SD) and pm � 0.14 � 0.16 across partici-
pants. The Pearson correlation coefficient between
P(stop) and go-RT was 0.29 � 0.08 (range, 0.14–0.43;
Fig. 1B), with p � 0.001 for 16 participants and p � 0.005
and 0.016 for the other 2 participants. At the group level,
we first estimated the P(stop) for each participant, took
the average of go-RT and stop error (SE) rate of the trials
at each P(stop) bin (width � 0.01) within each participant,
and then averaged the mean go-RT or mean SE rate
across participant on each bin. We truncated the extreme
P(stop) bins in which very few participants (n � 2) were
represented, and the resulting P(stop) bins were each in
the range of [0.08, 0.37] and [0.09, 0.27] for correlation
with grand-averaged go-RT and SE rate. Pearson corre-
lation showed a positive correlation between P(stop) and
the grand-averaged go-RT (r(29) � 0.89, 95% CI � [0.77,
0.94], p � 10�10b; Fig. 1C) and a negative correlation
between P(stop) and grand-averaged SE rate (r(18) �
–0.93, 95% CI � [–0.82, –0.97], p � 10�8c; Fig. 1D).
Together, the results showed that the dynamic Bayesian
model successfully captured the sequential effect for
each participant as well as for the group.

Neural time–frequency power correlates
To examine for which frequency bands and at what time

interval the time–frequency activities were related to se-
quential effects, we correlated the time–frequency power
at FCz channel in midfrontal region with P(stop) and
go-RT each in fixation-locked and go-locked epochs
across trials within each participant. As described in detail
earlier, we evaluated the statistical significance of the
correlations across participants in random effects analy-
sis on the basis of a cluster-based nonparametric permu-
tation test.

In the fixation-locked epoch, permutation test on the
0-500 ms range showed that P(stop) was positively cor-
related with the power in the cluster at 3-5 Hz (low-theta
band) and 0-200 ms interval (pperm � 0.034d, cluster
threshold at p � 0.02), with the strongest correlation at
�4–5 Hz and 100–150 ms (pperm � 0.036e, cluster thresh-
old at p � 0.005; Fig. 2A). In contrast, the go-RT was not
correlated with power in this time–frequency range (Fig.
2B).

In the go-locked epoch, permutation test showed that
P(stop) was not correlated with the power over the 0-800
ms range (Fig. 2C). In contrast, go-RT was negatively
correlated with power at 2–8 Hz (across delta and theta
bands) in the 200-700 ms interval (pperm � 0.005f, cluster
threshold at p � 0.02), with the strongest correlation at
2.5–4.5 Hz and 300–600 ms (pperm � 0.002g, cluster
threshold at p � 0.001; Fig. 2D).
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Given that P(stop) and go-RT were correlated as se-
quential effects (Fig. 1B, C), we further tested whether the
power of the time–frequency clusters each associated
with P(stop) and go-RT was correlated across trials within
each participant. For each participant, we correlated the
mean power of P(Stop) and go-RT clusters (with cluster
threshold at p � 0.005 and 0.001, respectively) in a Pear-
son regression. Because the distribution of the correlation
coefficients violated normality assumption (Kolmogorov–
Smirnov test: p � 0.001), we used a two-tailed Wilcoxon
signed-rank test to examine the group result. The test
showed that the correlation coefficients were significantly
below 0 (i.e., negative correlation) across all participants
(exact p � 0.024h, 95% CI � [–0.047, –0.002]; Fig. 2E).

We also correlated the power at FCz channel with PE in
stop-locked epoch across trials. In the stop-locked ep-
och, the nonparametric permutation test in the 0-500 ms
range showed that PE was positively correlated with the
power in the cluster at 12–22 Hz (low-beta band) and
300–400 ms (pperm � 0.021i, cluster threshold at p �
0.02), with the strongest correlation at �13–18 Hz and
320–380 ms (pperm � 0.004j, cluster threshold at p �
0.001; Fig. 2F). We further considered the possibility that
this correlation was confounded with stop trial perfor-

mance, given that P(stop) was associated with SE rate
(Fig. 1D). Thus, we regressed out the mean power of
stop-success and stop-error trial and performed the cor-
relation of the residual power with PE across all stop trials.
The result remained that the PE was positively correlated
with the power in the cluster at 12–22 Hz and 300–400 ms
(pperm � 0.020k, cluster threshold at p � 0.001), with the
strongest correlation at �13–19 Hz and 310–400 ms
(pperm � 0.001l; Fig. 2G).

We performed additional analyses on the time–fre-
quency power at Pz channel in parietal-midline region
(Fig. 2-1), following the same procedures on FCz. The
P(stop) was not correlated with time–frequency power in
either fixation-locked or go-locked epoch (Fig. 2-1A, B).
The go-RT was not correlated with time–frequency power
in fixation-locked epoch (Fig. 2-1C). However, the go-RT
was negatively correlated with the power in the cluster at
2–8 Hz (across delta and theta bands) and �100–500 ms
(pperm � 0.001m,n,o, cluster threshold at p � 0.02, 0.005,
or 0.001; Fig. 2-1D). This finding was consistent with the
finding at FCz (Fig. 2D). The PE was not correlated with
time–frequency power in stop-locked epoch (Fig. 2-1E, F),
whether the mean power of stop-success and stop-error
trial was regressed out or not.

Figure 1. Bayesian model prediction of behavioral performance in the stop-signal task. A, Example sequence of trials. The upper
panel shows the sequence of go (blue dots) or stop (red dots) trials and how Bayesian belief about encountering a stop trial [P(stop),
black line] increases and decreases, respectively, after each stop and go trial. The lower panel shows the sequence of go-RT in the
upper panel. Overall, go-RT tended to be prolonged with a higher P(stop). B, Correlation between P(stop) and RT across all go
success trials, with each regression line representing an individual participant. C, Positive correlation between go-RT and P(stop)
collapsed over all participants. The plot in the upper panel shows the mean � SE, the histogram in the lower panel shows the
distribution of P(stop), and both were binned at intervals of 0.01. D, Negative correlation between stop error (SE) rate and P(stop), with
the same format as in C.
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Figure 2. Trial-by-trial oscillatory power correlates of P(stop), go-RT, and PE at channel FCz. A, Correlation between
fixation-locked (onset at 0 ms) power and P(stop) at each time–frequency bin. The color represents the z-value of Spearman
correlation, and the black contours represent statistically significant time–frequency clusters in the nonparametric cluster-based
permutation test across participants, with clustering threshold at p � 0.02, 0.005, and 0.001 levels (see Materials and Methods
for details). It showed a positive correlation in the intervals 3–5 Hz and 0 –200 ms. B, No clusters showed a significant correlation
between go-locked power and P(stop). C, No clusters showed a significant correlation between fixation-locked power and
go-RT. D, Correlation between go-locked power and go-RT, with the permutation test showing a negative correlation in the
intervals 2– 8 Hz and 200 –700 ms. E, The coefficient of trial-by-trial Pearson correlation between the mean power of the clusters
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In sum, conflict anticipation as indexed by P(stop) was
positively correlated with the power in low-theta band
(3–5 Hz) over a fixation-locked interval, go-RT was nega-
tively correlated with the power in delta-theta band (2–8
Hz) over a go-locked interval, and PE was positively cor-
related with the power in the low-beta band (12–22 Hz)
over a stop-locked interval. These correlations were lo-
cated on the midfrontal area of the scalp (Fig. 2H–K).
Together, the results showed that P(stop), go-RT, and PE
can be distinguished by time–frequency representations
within a trial. Moreover, the time–frequency cluster of
P(stop) preceded that of go-RT in time, and the powers of
P(stop) and go-RT clusters were negatively correlated,
suggesting a potential causal link between the neural
activities of P(stop) and go-RT.

Beamforming source reconstruction
Regions reconstructed and localized for the EEG cor-

relates of conflict anticipation and RT slowing are shown
in Fig. 3A and B and summarized in Table 1. At p � 0.001
(uncorrected) and cluster size �2000 mm3, the time–
frequency cluster for P(stop) was localized to the right
supramarginal gyrus (SMG) and anterior pre-SMA. These
two clusters are significant at p � 0.05, corrected for
familywise error of multiple comparisons, with small vol-
ume correction for the regions of interest as shown in
fMRI (Hu et al. 2015a). At the same voxel threshold, the
time–frequency cluster for go-RT could not be localized to
a significant source. We thus used a more liberal voxel
threshold to examine the results. At p � 0.005 (uncor-
rected) and cluster size �20,000 mm3, the time–fre-

continued
identified in A and D of individual participants. Wilcoxon signed rank test showed that the correlation coefficients across
participants were significantly below zero. F, G, Correlation between stop-locked power and PE, with the permutation test
showing a positive correlation in the intervals 12–22 Hz and 300 – 400 ms. The topographies of each correlational cluster (p �
0.005) are shown in the bottom panel, where H, I, J, and K each show the cluster of A, D, F, and G, all with the strongest
correlations at the midfrontal region. We performed the same analyses at Pz channel (Fig. 2-1).

Figure 3. Source reconstruction and localization. EEG correlates of conflict anticipation (p � 0.001, uncorrected) were localized to the
right SMG and the anterior pre-SMA. B, EEG correlates of RT slowing (p � 0.005, uncorrected) were localized to the middle and
inferior frontal gyrus (MFG/IFG) and precentral and postcentral gyrus (PC).
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quency cluster for go-RT was localized to the right
precentral and postcentral gyri and middle/inferior frontal
gyri. We were unable to reconstruct the source of the
power in the low-beta band (12–22 Hz) in association with
PE, because there were much fewer (�100) stop trials (in
comparison to 350 � 46 and 257 � 58 trials that survived
artifact rejection and were available for source construc-
tion each for conflict anticipation and RT slowing).

Discussion
We identified time–frequency neural activities associat-

ing trial-by-trial conflict anticipation to RT slowing in a
stop-signal task. First, we showed that conflict anticipa-
tion, quantified by the trial-by-trial likelihood of a stop
signal from a dynamic Bayesian model (Yu and Cohen,
2009), was positively correlated with RT slowing across
trials, in support of proactive behavioral control. The
Bayesian model provides a unique framework to estimate
individuals’ expectations from observations and describe
how individuals adjust behavior according to these ex-
pectations. In EEG, we showed that (1) conflict anticipa-
tion was positively correlated with the power at low theta
band (3–5 Hz) during the foreperiod but not after go-signal
onset; (2) go-trial RT was negatively correlated with the
power at delta-theta band (2–8 Hz) after go-signal onset
but not during the foreperiod; (3) the power of these two
time–frequency clusters was negatively correlated across
trials, mirroring the behavioral finding of sequential effect;
and (4) stimulus prediction error was positively correlated
with the power in the low-beta band (12–22 Hz), after the
onset of stop signal. Further, beamforming source recon-
struction localized the EEG correlates of conflict anticipa-
tion to the supramarginal gyrus and anterior pre-SMA,
consistent with previous fMRI studies (Hu et al. 2015a). It
is worth mentioning that despite the strong correlation
between P(stop) and RT, we were able to identify distinct

neural correlates of these behavioral measures by mod-
eling P(stop)- and RT-related activities each at trial and
go-signal onsets. This is made possible by the temporal
resolution of EEG signals even when the trial and go-
signal onsets occurred within 1–3 s. Thus, these findings
distinguished the time–frequency electrophysiological
correlates of conflict anticipation, response control, and
prediction error and characterized the trial-by-trial neural
oscillatory dynamics of proactive control of motor re-
sponse.

The current results showed that theta power reflects the
magnitude of both conflict anticipation and RT slowing,
and these two activities were correlated in the same trial,
broadly in accord with a role of theta oscillations in cog-
nitive control (Cavanagh et al. 2009; Cohen and Rid-
derinkhof, 2013; Cavanagh and Frank, 2014; Cohen,
2014a, 2016; Chmielewski et al. 2016; van Noordt et al.
2016a, b; Wang et al. 2016). Previous EEG studies of
Simon tasks showed that theta power was more positively
correlated with RT on high-conflict than on low-conflict
trials (Cohen and Cavanagh, 2011; Cohen and Donner,
2013); however, it remains unclear whether theta power
primarily reflects conflict processing or behavioral re-
sponse as a result of the conflict or both. Here, we
dissociated the effects of conflict anticipation and re-
sponse control and showed that theta power correlated
with these two processes in opposite directions, and it
is possible that the previous findings were mainly driven
by conflict anticipation. This new finding suggests that
different cortical networks process conflict anticipation
and response control, in communication via theta os-
cillation. These results are also consistent with earlier
fMRI findings that distinct prefrontal and frontal cortical
structures support conflict anticipation and RT slowing,
and activities during conflict anticipation Granger

Table 1. Source reconstruction for the EEG correlates of conflict anticipation (p < 0.001, uncorrected; cluster size >2000
mm3) and RT slowing (p < 0.005, uncorrected; cluster size >20,000 mm3)

Cluster size
(mm3) t value MNI coordinate (mm) Side Identified brain region

x y z
Conflict anticipation
3,277 4.09 59 –23 50 R Supramarginal gyrus
2,363 3.86 4 37 42 R/L Presupplementary motor area
RT slowing
20,927 3.79 38 61 25 R Middle and inferior frontal gyri
30,936 3.62 61 –10 7 R Central operculum, postcentral gyrus

Table 2. Statistical table

Location Data structure Type of test
Observed power or
95% confidence interval

a Normal distribution Paired t-test [36, 53]
b Normal distribution Pearson correlation [0.77, 0.94]
c Normal distribution Pearson correlation [–0.82, –0.97]
d, f, g, j, k, l, m, n, o Nonparametric Nonparametric cluster-based permutation test 100%
e Nonparametric Nonparametric cluster-based permutation test 98.0%
h Nonparametric Wilcoxon signed rank test [–0.047, –0.002]
i Nonparametric Nonparametric cluster-based permutation test 95.5%
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caused activities during RT slowing (Hu et al. 2015a, b;
Manza et al. 2016).

A substantial body of work supports a role of theta
oscillation in proactive control. In the current findings, the
onset time of theta power responses of both conflict
anticipation and RT slowing started as early as �0–200
ms after stimulus onset, favoring the explanation that
these responses reflect preparation for the upcoming
event rather than exogenously elicited reactions. An EEG
study of conflict tasks showed that RT was better pre-
dicted by ongoing endogenous (non–phase-locked) than
exogenous (phase-locked) theta power, supporting a top-
down, proactive rather than bottom-up, reactive process
(Cohen and Donner, 2013). In an anti-saccade task, me-
dial frontal theta power was increased during response
preparation on correct but not error trials (van Noordt
et al. 2016b). With transcranial alternating current stimu-
lation in the theta frequency applied to midfrontal scalp
region, participants slowed down in response during low-
conflict trials and as a result exhibited less conflict effect
in a Simon task (van Driel et al. 2015). In another EEG
study of proactive control, theta oscillation reflected in-
formation gathering for proactive control across oddball,
go/no-go, and task-switching paradigms (Cooper et al.
2016). More broadly, studies have associated theta oscil-
lations to various top-down cognitive processes to ready
attention for task switching (Min and Park, 2010; Daitch
et al. 2013; Phillips et al. 2014), maintain working memory
(Scheeringa et al. 2009), and encode and retrieve episodic
memories (Nyhus and Curran, 2010).

The current findings showed that delta oscillations, in
addition to theta oscillations, are correlated with RT slow-
ing. Earlier studies showed delta oscillation in the motor
process of cognitive control, in accord with the current
findings. For example, delta and theta power followed the
motor response during error-related reactive control and
in negative association with RT in trial-by-trial correlation
(Cohen and van Gaal, 2014). Another intracranial EEG
study showed that the phase of delta-theta (2–5 Hz) os-
cillation modulated high-gamma power (�70 Hz), and a
stronger coupling predicted shorter RT in spatial target
detection (Szczepanski et al. 2014; Voytek et al. 2015). A
recent study of oddball, go/no-go, and switch tasks dem-
onstrated sensitivity of frontal delta and theta power to
sensorimotor control (Cooper et al. 2016). In a modified
stop-signal paradigm, which manipulated proactive/reac-
tive control (with informative/neutral preparatory cue) in
conjunction with selectivity of stopping behavior (uni-
manual vs. bimanual response), both factors interactively
modulated delta power on stop trials (Lavallee et al. 2014).
However, it is unclear whether the change of delta power
reflects the difference of bottom-up response to stopping
cue or top-down conflict anticipation. The current trial-by-
trial analyses dissociated these two factors and showed
that the delta power was associated with RT but not with
conflict anticipation, favoring the explanation that delta
power reflects response control rather than signal antici-
pation.

It has been shown that the theta and delta oscillations
were the major frequency-domain features of time-

domain N2 and P3 ERP components, respectively (Ca-
vanagh et al. 2012; Huster et al. 2013; Cavanagh and
Frank, 2014; Harper et al. 2014; Cavanagh and Shack-
man, 2015). Evidence is available from response inhibition
tasks (e.g. SST, go/no-go) that theta/N2 and delta/P3
each reflects conflict monitoring and motor inhibition
(Huster et al. 2013). In particular, the amplitude of anterior
N2, generated in medial-frontal cortex, was modulated by
the predictability of stimulus (Heinze et al. 1990; Woods
et al. 1992), consistent with our finding that theta power
reflects conflict anticipation. P3 is associated with re-
sponse inhibition (Kok et al. 2004; Kenemans, 2015), and
the peak latency of P3 is positively correlated with RT
(Conroy and Polich, 2007; Polich, 2007). Here, we showed
that stronger delta power was associated with shorter RT,
and it is possible that the change in delta power is re-
flected as shift in P3 peak latency in the time domain.
However, it is important to note that, as a temporally
averaged phase-locked signal, ERP waveform does not
distinguish oscillation in various frequency bands, and the
non–phase-locked neural oscillations on each trial may
cancel out in averaged ERP waveform. The trial-by-trial
analysis employed in the current study did not lend itself
to revealing potential phase resetting responses, and fu-
ture study is needed to directly examine this issue.

Beamforming analyses localized the time–frequency
correlates of conflict anticipation to the pre-SMA and right
SMG and those of RT slowing to right prefrontal and
somatomotor cortex, in correspondence to earlier fMRI
findings (Hu et al. 2015a). The preSMA is implicated in
numerous studies for volitional control of behavior (Rush-
worth et al. 2004; Kennard et al. 2005; Jaffard et al. 2008;
McDowell et al. 2008; Wolpe et al. 2013) and other func-
tions, such as performance monitoring, required for cog-
nitive control, as demonstrated extensively in unit
recordings from behaving monkeys (Stuphorn et al. 2000;
Ito et al. 2003; Stuphorn and Schall, 2006). Both right-
hemispheric prefrontal structures (Li et al. 2008; Cai et al.
2014) and ipsilateral somatomotor cortex (Meyer et al.
1998) are known to be involved in the control of move-
ment initiation. On the other hand, the beamforming re-
sults were obtained with an uncorrected statistical
threshold. Although the pre-SMA and right SMG were in
the locations shown by an earlier fMRI study (Hu et al.
2015a) and significant with small volume correction, the
clusters identified for RT slowing were not exactly the
same. Thus, while a liberal threshold may be needed to
accommodate noisy trial-by-trial EEG responses and a
lack of individual MRI-based head model for source re-
construction (Green and McDonald, 2009), these results
would require replication.

We also showed that stimulus prediction error was
encoded by low-beta band power. This finding is consis-
tent with an earlier report that beta oscillations (�13–30
Hz) react to unexpected, bottom-up factors (Arnal and
Giraud, 2012; Engel and Fries, 2010). In sensory systems,
low-beta oscillations (�13–20 Hz) respond to prediction
error, as would occur during an unexpected or oddball
stimulus (Arnal et al. 2011; Chang et al. 2016; Fujioka et al.
2009; Haenschel et al. 2000; Kopell et al. 2011). Interest-
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ingly, the time–frequency interval of the low-beta re-
sponse appeared to be similar for auditory prediction
error (Chang et al. 2016), potentially suggesting similar
neural process across sensory modalities. Another study
showed that beta oscillatory synchronization in the fron-
tostriatal network was increased in response to a novel
stimulus to support adaptation of ongoing behavior (Wes-
sel et al. 2016). In other studies, the power of high-beta
band (�20–30 Hz) increased to unexpected positive re-
wards (Cohen et al. 2007; Marco-Pallares et al. 2008) and
alpha to beta (�8–25 Hz) power was negatively correlated
with positive prediction error (Cavanagh, 2015). More
work is needed to investigate whether low-beta oscilla-
tions elicited by stimulus prediction error can be localized
to the dorsal anterior cingulate cortex, as shown by fMRI
(Ide et al. 2013; Silvetti et al. 2014; Hu et al. 2015a; Manza
et al. 2016). Likewise, many studies have shown that
alpha oscillations are associated with top-down pro-
cesses, including sustained alertness, selective attention,
and stimulus-driven adaptive control (Sadaghiani and
Kleinschmidt, 2016). Given their broad role in cognitive
processes, it remains to be seen how alpha oscillations
may partake in proactive control in the stop-signal task.

An important consideration is whether or how P(stop)
as computed by the Bayesian model relates linearly to the
construct of conflict anticipation. For instance, an ex-
treme value of P(stop) (e.g., 0.9) would suggest full antic-
ipation of a stop signal and readiness to stop, thus
involving little conflict. On the other hand, P(stop) as
estimated by the Bayesian model ranged from 0 to �0.45
(see Fig. 2 of Ide et al. 2013 and Fig. 1 of Hu et al. 2015a)
with a peak at 0.25—the probability of the stop signal
dictated by the experiment. In the current experiment,
P(stop) estimates centered around a lower range. Thus, it
appears that even at an upper value of, say, 0.4 of P(stop),
participants predominantly expect to respond to go sig-
nal. If “conflict” reflects the conflicting processes between
responding and withholding a response, P(stop) would
seem to monotonically reflect the extent of conflict antic-
ipation within this estimated range of values. It is not clear
why the P(stop) in the current study spanned a lower
range, compared with earlier studies. Of the task param-
eters, the only difference is a shorter foreperiod in the
current EEG (1–3 s) compared to earlier fMRI (1–5 s)
studies. This observation suggests the need of more work
to investigate the influence of task variables on model
outcomes of SST performance.

Another issue pertains to the potential differences in the
influence of stop success and error trials on proactive
control. A previous study of a saccade countermanding
task showed post-success but not post-error slowing in
macaque monkeys (Emeric et al. 2007). Although incon-
sistent with earlier work of choice RT tasks, this finding
suggests that monkeys may perform to optimize their
reward (water intake) by executing fast saccades most of
the time and only slowing down after successfully can-
celled (rewarded) trials, in favor of positive versus nega-
tive reinforcement. Stop success and error trials may
involve distinct psychological processes and contribute to
proactive control via distinct mechanisms according to

experimental contexts (Li et al. 2008; Chang et al. 2014;
unpublished observations). New models would be needed
to capture the potential differences in the influence of
success and error trials and, more broadly, how positive
and negative reward contingencies may modulate cogni-
tive control differently.

In conclusion, the current study provides evidence for
distinct time–frequency neural mechanisms of conflict an-
ticipation and behavioral slowing in the stop-signal task.
Conflict anticipation was reflected in the power in low-
theta band (3–5 Hz) during the foreperiod, and behavioral
slowing was reflected in the power in delta-theta band
(2–8 Hz) during motor response. The magnitude of power
in these time–frequency clusters was significantly corre-
lated on a trial-by-trial basis. These findings substantiate
a neural oscillatory mechanism associating conflict antic-
ipation to behavioral adjustment.
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