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Abstract
Neurons in high-level visual areas respond to more complex visual features with broader receptive fields (RFs)
compared to those in low-level visual areas. Thus, high-level visual areas are generally considered to carry less
information regarding the position of seen objects in the visual field. However, larger RFs may not imply loss of position
information at the population level. Here, we evaluated how accurately the position of a seen object could be predicted
(decoded) from activity patterns in each of six representative visual areas with different RF sizes [V1–V4, lateral occipital
complex (LOC), and fusiform face area (FFA)]. We collected functional magnetic resonance imaging (fMRI) responses
while human subjects viewed a ball randomly moving in a two-dimensional field. To estimate population RF sizes of
individual fMRI voxels, RF models were fitted for individual voxels in each brain area. The voxels in higher visual areas
showed larger estimated RFs than those in lower visual areas. Then, the ball’s position in a separate session was
predicted by maximum likelihood estimation using the RF models of individual voxels. We also tested a model-free
multivoxel regression (support vector regression, SVR) to predict the position. We found that regardless of the
difference in RF size, all visual areas showed similar prediction accuracies, especially on the horizontal dimension.
Higher areas showed slightly lower accuracies on the vertical dimension, which appears to be attributed to the
narrower spatial distributions of the RF centers. The results suggest that much position information is preserved in
population activity through the hierarchical visual pathway regardless of RF sizes and is potentially available in later
processing for recognition and behavior.
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Introduction
Along the ventral visual cortical pathway, neurons in

higher-level areas respond to more complex visual fea-

tures with broader receptive fields (RFs). This is thought to
serve to represent objects regardless of the position in the
visual field. Because of this receptive field property, po-
sition information is often assumed to be lost in these
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Significance Statement

High-level ventral visual areas are thought to achieve position invariance with larger receptive fields at the
cost of the loss of precise position information. However, larger receptive fields may not imply loss of
position information at the population level. Here, multivoxel fMRI decoding reveals that high-level visual
areas are predictive of an object’s position with accuracies similar to those of low-level visual areas,
especially on the horizontal dimension, preserving the information potentially available for later processing.
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areas (Ito et al. 1995; Logothetis and Sheinberg, 1996;
Tanaka, 1996). However, the loss of position information
in single neurons does not necessarily imply the loss of
position information at the population level. Theoretical
studies have suggested that if the RFs of model neurons
are uniformly distributed in the 2D visual field, the Fisher
information about the position of a stimulus is not de-
graded by an increase in RF size (Zhang and Sejnowski,
1999; Eurich and Wilke, 2000). As the Fisher information
provides the theoretical lower bound of the estimation/
decoding error, position information may not be lost even
in visual areas with large RFs, such as the lateral occipital

complex (LOC) and fusiform face area (FFA). Although
several recent functional magnetic resonance imaging
(fMRI) studies demonstrated successful classification of
the position (e.g., left versus right, upper versus lower) of
a presented object from ventral visual areas (Schwarzlose
et al. 2008; Carlson et al. 2011; Golomb and Kanwisher,
2011; Kay et al. 2015), the relationship between RF size
and decoded position information across visual areas has
not been quantitatively examined.

Here, we estimated RF sizes for fMRI voxels and evalu-
ated how accurately the position of a seen object was
predicted (decoded) from activity patterns in each of six
representative visual areas (V1–V4, LOC, and FFA). In our
experiments, we collected fMRI responses while subjects
viewed a ball randomly moving in a two-dimensional field
(Fig. 1; a ball with a diameter of 1.6° presented within a 7.6°
� 7.6° square field). The subjects were instructed to fix their
eyes to the fixation point and keep track of the ball in their
mind. fMRI activity was collected at a 3 � 3 � 3-mm
resolution, and the signals from voxels in areas V1–V4, LOC,
and FFA were analyzed (see Materials and methods). To
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Figure 1. Visual stimulus and analysis overview. A white-and-black checkered sphere was displayed on a screen with a flickering rate
of 6 Hz. The notations show the size of the sphere and the size of the field where the sphere could move. The position of the center
of the sphere was predicted from measured brain activity. Prediction was performed based on maximum likelihood (ML) estimation
using estimated receptive field models or the support vector regression algorithm.
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estimate RF sizes, RF models were fitted for individual vox-
els in each brain area (Dumoulin and Wandell, 2008). In the
decoding analysis, the ball position was predicted either by
maximum likelihood (ML) estimation using the RF models of
individual voxels or by support vector regression (SVR;
Drucker et al. 1997; Chang and Lin, 2011) with multivoxel
patterns as inputs (Fig. 1; see Materials and methods). Al-
though the maximum likelihood method provides straight-
forward interpretation given accurate RF models, SVR is
expected to perform model-free information retrieval from
fMRI data. Our results show that with both methods, posi-
tion decoding accuracies were similar across the low- and
high-level visual areas, especially along the horizontal axis,
despite the differences in RF size and spatial coding in
individual voxels.

Materials and Methods
Subjects

Five healthy subjects (one female and four males, aged
between 23 and 31 years) with normal or corrected-to-
normal vision participated in our experiments. This sample
size was chosen based on previous fMRI studies with similar
experimental designs (Dumoulin and Wandell, 2008; Amano
et al. 2009). We obtained written informed consent from all
subjects before their participation in the experiments, and
the Ethics Committee of ATR approved the study protocol.

Position tracking experiment
The stimulus was created with Psychtoolbox-3 (RRID:

SCR_002881) and the associated openGL for Psychtool-
box extension. The stimulus was projected onto a display
in the fMRI scanner and viewed through a mirror attached
to the headcoil. We conducted three scanning sessions
(runs) for each subject. In each run, an initial rest period of
32 s was followed by four blocks of stimulus presentation,
each of which lasted for 240 s. The stimulus presentation
blocks were separated by 12-s rest periods. An extra 12-s
rest period was added to the end of each run (1040 s total for
each run). During each of the rest periods, a circular fixation
point (0.25° diameter) was displayed on the center of the
display, and subjects were instructed to attend to this point.
During stimulus presentation, in addition to the fixation point,
a white-and-black checkered sphere with a diameter of 1.6°
was displayed with a flickering rate of 6 Hz (Fig. 1).

The sphere was programmed to move in a random orbit
produced by the following process. For each frame, the
position of the center of the sphere was updated by

s(t � 1) � s(t) � cp(t) ,

where s�t� is the position at frame t (i.e., s�t� � �sx�t�,
sy�t��) and p�t� is the vector indicating the direction of the
movement from frame t to (t � 1), which imitates momentum.
The constant c, which is a parameter that controls the speed,
was set to 0.008 in this study. The vector p�t� was updated by

p(t � 1) �
p(t) � �

�p(t) � ��
,

where � is a random vector sampled from a two dimen-
sional Gaussian distribution N�0, �stim

2 I� for every frame.

�stim was set to 0.1 in this study. The movement of the
sphere center was limited within a 6.0° � 6.0° square field
(the stimulus spanned a 7.6° � 7.6° square field). We
restricted the stimulus position within this range so that
subjects could easily keep track of the target sphere with
attention. If s�t � 1� was not in the allowed region in terms
of horizontal or vertical position, the first or second ele-
ment of p�t� was multiplied by –1 before the position was
updated. This procedure ensures that the sphere is bound
to the edge of the allowed region. The frame rate of
stimulus presentation was 60 Hz.

Retinotopy experiment
The retinotopy experiments were conducted according

to conventional protocol (Engel et al. 1994; Sereno et al.
1995). We used a rotating wedge and an expanding ring
covered in a flickering checkerboard. The data were used
to delineate the borders between visual cortical areas and
identify the retinotopic map (V1–V4) on the flattened cor-
tical surfaces of individual subjects.

Localizer experiment
Functional localizer experiments were conducted to

identify the LOC (Kourtzi and Kanwisher, 2000) and FFA
(Kanwisher et al. 1997) for each individual subject. The
localizer experiments comprised four to eight runs, and
each run contained 16 stimulus blocks. In the experi-
ments, intact or scrambled images (12° � 12°) belonging
to face, object, house, and scene categories were pre-
sented around the center of the screen. Stimuli from each
of the eight stimulus types (four categories � two condi-
tions) were presented twice per run. Each stimulus block
consisted of a 15-s intact or scrambled stimulus presen-
tation. The intact and scrambled stimulus blocks were
presented successively (the order of the intact and scram-
bled stimulus blocks was random), followed by a 15-s rest
period where a uniform gray background was displayed.
Extra 33-s and 6-s rest periods were presented before
and after each run, respectively. In each stimulus block,
20 different images of the same stimulus type were pre-
sented for 0.3 s, separated by 0.4-s-long blank intervals.

MRI acquisition
We collected fMRI data using a 3.0-Tesla Siemens

Magnetom Trio, A Tim scanner. An interleaved T2�-
weighted gradient-EPI scan was performed to acquire
functional images of the entire occipital lobe (position
tracking experiment and retinotopy experiment: TR, 2000
ms; TE, 30 ms; flip angle, 80°; FOV, 192 � 192 mm; voxel
size, 3 � 3 � 3 mm; slice gap, 0 mm; number of slices, 30;
localizer experiment: TR, 3000 ms; TE, 30 ms; flip angle,
80°; FOV, 192 � 192 mm; voxel size, 3 � 3 � 3 mm; slice
gap, 0 mm; number of slices, 50). T2-weighted turbo spin
echo images were scanned to acquire high-resolution
anatomical images of the same slices used for the EPI
(position tracking experiment and retinotopy experiment:
TR, 6000 ms; TE, 57 ms; flip angle, 160°; FOV, 192 � 192
mm; voxel size, 0.75 � 0.75 � 3.0 mm; localizer experi-
ment: TR, 7020 ms; TE, 69 ms; flip angle, 160°; FOV, 192 �
192 mm; voxel size, 0.75 � 0.75 � 3.0 mm). T1-weighted
magnetization-prepared rapid acquisition gradient-echo
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(MP-RAGE) fine-structural images of the entire head were
also acquired (TR, 2250 ms; TE, 3.06 ms; TI, 900 ms; flip
angle, 9°, FOV, 256 � 256 mm; voxel size, 1.0 � 1.0 � 1.0
mm).

MRI data preprocessing
The first 8-s scans (position tracking experiment and

retinotopy experiment) or 9-s scans (localizer experiment)
of each run were discarded to avoid MRI scanner insta-
bility. We then subjected the acquired fMRI data to three-
dimensional motion correction with SPM5. Those data
were then coregistered to the within-session high-
resolution anatomical images of the same slices used for
EPI and subsequently to the whole-head high-resolution
anatomical images. The coregistered data were then re-
interpolated as 3 � 3 � 3-mm voxels. For the data from
the position tracking experiment, the signal amplitudes
from individual voxels were linearly detrended in each run
and shifted by 4 s (two fMRI volumes) to compensate for
hemodynamic delay. We did not perform the convolution
with the stimulus with a hemodynamic response function,
as it makes the estimation of receptive field models diffi-
cult. Instead, we moved the target very slowly so that
each fMRI volume can be associated with a single posi-
tion (with a 4-s delay).

Region of interest selection
V1, V2, V3, and V4 were identified using the data from

the retinotopy experiments (Engel et al. 1994; Sereno
et al. 1995). The LOC and FFA were identified using the
data from the functional localizer experiments (Kanwisher
et al. 1997; Kourtzi and Kanwisher, 2000). The data from
the retinotopy experiment were transformed into Talairach
space, and the visual cortical borders were delineated on
the flattened cortical surfaces using BrainVoyager QX
(RRID: SCR_013057). The coordinates of voxels around
the gray-white matter boundary in V1–V4 were identified
and transformed back into the original coordinates of the
EPI images. The localizer experiment data were analyzed
using SPM5. The voxels showing significantly higher ac-
tivation in response to intact object or face images com-
pared with that for scrambled images (t test, uncorrected
p � 0.05 or 0.01) were identified and defined as LOC and
FFA, respectively.

Population receptive field model fitting
To estimate the receptive field, we fitted a population

receptive field model to voxel amplitudes from each voxel
in the visual cortex. We used fMRI data from the position
tracking experiment in the analysis. Our model was based
on a two-dimensional Gaussian receptive field, and the
noise on voxel amplitudes was assumed to be Gaussian
(Dumoulin and Wandell, 2008). Mathematically, this as-
sumption was expressed by

r̂(t) � C0 � C1 � exp��
(x � �x)2 � (y � �y)2

2�2 �
� I(x, y, t)dxdy

and

r(t) 	 N�r̂(t), �noise
2 � .

r̂�t� and r�t� are the fitted and observed voxel amplitudes
for the t-th fMRI volume. C0, C1, �x, �y, �, and �noise are
constants to be estimated. I(x,y,t) is the binary image
function whose output is one if the visual stimulus is
present at location (x,y) at the time of the t-th fMRI volume
measurement, and zero otherwise.

The six parameters were fitted by maximum likelihood
estimation, which was done by maximizing

log 

t�1

T

p(r(t) |C0, C1, �x, �y, �, �noise)

� �
T
2

log(2��noise
2 ) � �

t�1

T
(r(t) � r̂(t))2

2�noise
2

.

T is the number of the fMRI volumes used for model
fitting, and we used 960 volumes from two experimental
runs. p�r�t�	C0, C1, �x, �y, �, �noise� is the probability den-
sity function of r(t) given the six parameters. The maximi-
zation was conducted using a tool implemented in Matlab
(fminsearch.m from the optimization toolbox). To avoid
local solutions, initial values in the optimization were
searched on a regular grid. As per previous studies (Du-
moulin and Wandell, 2008; Kay et al. 2008; Nishimoto
et al. 2011), only well-fitted voxels were used in the anal-
ysis. From all available voxels (806 � 138, 922 � 85, 871 �
66, 664 � 164, 659 � 82, and 740 � 124 voxels for
V1–V4, LOC, and FFA, respectively; mean � SD across
subjects and sessions), we first eliminated the voxels
whose estimated RF centers were outside the field the
stimulus sphere could span (7.6° � 7.6°): 231 � 80, 255 �
55, 237 � 44, 183 � 65, 149 � 47, and 187 � 138 voxels
for V1–V4, LOC, and FFA, respectively. Then we calcu-
lated the correlation coefficients between the real and
fitted amplitudes to evaluate the fitness. The voxels with
r � 0.2 were used (see Results for the numbers of se-
lected voxels in individual areas).

The estimated models were also used in the decoding
analysis. To separate data for decoding analysis and for
RF model fitting, we performed a cross-validation proce-
dure. In our experiments, each subject participated in the
position tracking experiment that consisted of three ex-
perimental runs. Two runs were used for fitting receptive
field models, and the rest run was used as test data in the
decoding analysis. The test run was shifted such that all
runs were treated as test data once (leave-one-run-out
cross-validation).

Decoding analysis
We used the RF model or SVR (Drucker et al. 1997;

Chang and Lin, 2011) to predict the position of the stim-
ulus from fMRI responses. In the prediction with the RF
models, we calculated the stimulus position with the high-
est likelihood as the predicted position for each fMRI
volume. Thus, the predicted position with the RF models
was
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ŝx,ŝy � arg max log
sx,sy



n�1

N

p(rn	sx, sy) ,

where

rn	sx, sy 	 N�r̂n(sx, sy), �noise(n)
2�

and

r̂n(sx, sy) � C0(n) � C1(n)

� � exp��
(x � �x(n))2 � (y � �y(n))2

2(�(n))2

I(x, y ;sx, sy)dxdy.

Here, sx and sy are the parameters that indicate the posi-
tion of the stimulus center in the model, and rn is the voxel
amplitude of the n-th voxel in a given fMRI response.
p�rn	sx, sy� is the probability density function of rn given
that the stimulus center is at (sx, sy). We assumed the
Gaussian noise on different voxels to be independent, and
the voxels in each visual area were combined by taking
the product of their probability density functions. C0�n�,
C1�n�, �x�n�, �y�n�, ��n�, and �noise�n� are the RF model param-
eters for the n-th voxel. I�x, y;sx, sy� is the binary image
function when the stimulus is centered on (sx, sy); thus the
value of I�x, y;sx, sy� is one if the distance between (x, y)
and (sx, sy) is less than the stimulus radius (0.8°), and zero
otherwise.

For practical reasons, for each fMRI volume, we calcu-
lated the likelihood for each of 60 � 60 positions in the
visual field, and the position with the highest likelihood
was treated as the predicted position.

In the prediction with SVR, the predicted position is
given by

ŝx � wx · 
(r) � bx, ŝy � wy·
(r) � by ,

where

r � (r1, r2, · · ·, rN) .

wx and wy are weight vectors, bx and by are biases, and

�r� is a vector function that satisfies


(r1)·
(r2) � exp��
�r1 � r2�

2

�N
� .

The models were trained by minimizing the cost func-
tion of the SVR algorithm with training data, and the
model training and prediction were performed without
explicitly calculating the weight vectors by using the
kernel trick (Drucker et al. 1997; Chang and Lin, 2011;
RRID: SCR_010243).

We generated predicted positions for 1440 fMRI vol-
umes in three runs and calculated the correlation coeffi-
cient between the true and predicted positions in the
horizontal or vertical axes as the prediction accuracy.

Results
First, we fitted an RF model to the response of each

voxel (Dumoulin and Wandell, 2008). Our model consists

of a two-dimensional Gaussian receptive field with the
parameters of the mean (x, y positions) and the standard
deviation (RF size). Gaussian noise is assumed in the
response amplitude. To evaluate the fitness, we calcu-
lated the correlation coefficients between the real and
fitted amplitudes (Fig. 2A; r � 0.19 � 0.13, 0.20 � 0.13,
0.21 � 0.14, 0.18 � 0.12, 0.18 � 0.12, and 0.18 � 0.11 for
V1–V4, LOC, and FFA, respectively; mean � SD across
subjects and sessions). All visual areas analyzed show
similar distributions of fitness. As per in previous studies,
only well-fitted voxels with r � 0.2 were used in further
analyses presented in the following (Dumoulin and Wan-
dell, 2008; Kay et al. 2008; Nishimoto et al. 2011; 192 �
52, 237 � 47, 254 � 78, 135 � 84, 155 � 91, and 164 �
108 voxels for V1–V4, LOC, and FFA, respectively),
whereas lower or higher thresholds on r yielded qualita-
tively similar results but with generally poorer decoding
accuracies. Estimated RF sizes tended to be larger for
voxels in the higher visual cortex (Fig. 2B, C; ANOVA on
mean RF sizes across visual areas, F(5,24) � 11.77, p �
7.968 � 10�6), consistent with previous studies (Dumoulin
and Wandell, 2008; Amano et al. 2009).

Using the models described above, we conducted a
decoding analysis to evaluate the amount of position
information in each visual area. We estimated the 2D
coordinates of the ball position by taking the position with
the highest likelihood for a given fMRI activity pattern. To
quantify the prediction accuracy, we calculated the cor-
relation coefficient between the true and predicted coor-
dinates for each of the horizontal and vertical axes. Model
fitting and position prediction were performed on fMRI
data from separate runs via a cross-validation procedure
(leave-one-run-out cross-validation).

The ball position was well predicted from the brain
activity in all brain areas tested (Fig. 3A, B upper; Video 1):
the correlation coefficients between the true and pre-
dicted positions (mean across subjects; horizontal/verti-
cal coordinates) were 0.75/0.73 for V1, 0.74/0.74 for V2,
0.77/0.75 for V3, 0.63/0.62 for V4, 0.66/0.35 for LOC, and
0.66/0.40 for FFA (95% confidence intervals [CIs]: [0.54,
0.87]/[0.48, 0.87], [0.59, 0.84]/[0.53, 0.86], [0.50, 0.90]/
[0.43, 0.90], [0.17, 0.86]/[0.21, 0.85], [0.47, 0.79]/[0.04,
0.60], and [0.50, 0.77]/[0.05, 0.66], respectively). Notably,
the two higher visual areas with large RFs showed effec-
tive position decoding. All areas showed similar predictive
performance for the horizontal position (Fig. 3B upper,
black line) with no significant difference (ANOVA on cor-
relation coefficients [Fisher’s z-transformed] across visual
areas, F(5,24) � 0.68, p � 0.6418). However, the decoding
accuracy for the vertical position showed a decline in LOC
and FFA (Fig. 3B upper, gray line; F(5,24) � 3.27, p �
0.0216). In LOC and FFA, the decoding accuracy was
significantly greater for the horizontal dimension than for
the vertical dimension (t(4) � 11.98, p � 0.0003 for LOC;
t(4) � 6.64, p � 0.0027 for FFA; p � 0.3 for all other areas).
SVR yielded slightly greater decoding accuracies in gen-
eral, with qualitatively similar dependencies on visual ar-
eas and the horizontal/vertical dimension (Fig. 3B lower;
ANOVA across visual areas, F(5,24) � 1.04, p � 0.4171 for
the horizontal dimension, F(5,24) � 1.73, p � 0.1653 for the
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vertical dimension; t test between the horizontal and ver-
tical dimensions, t(4) � 4.09, p � 0.0150 for V4, t(4) � 8.06,
p � 0.0013 for LOC, t(4) � 5.48, p � 0.0054 for FFA, p �
0.25 for all other areas), indicating that this tendency is
independent of the decoding method. The difference
found in LOC and FFA is consistent with the classification

results in a previous fMRI study (Carlson et al. 2011),
although the previous study did not test it for the lower
visual cortex.

To find out factors that could affect the anisotropy in
LOC and FFA, we examined the distribution of the RF
centers of individual voxels in each area (Fig. 4A, B). In
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Figure 2. Properties of estimated receptive field models. A, Histogram of the fitness of receptive field models. For each voxel, the
correlation between the observed and fitted amplitudes was evaluated. Voxels were pooled across five subjects and three sessions.
Voxels with estimated receptive field centers outside the field the stimulus could span were excluded. B, Mean receptive field size
for each visual area. We evaluated the receptive field size of each voxel using the parameter sigma of the fitted Gaussian receptive
field. Colored lines show the mean across voxels for individual subjects. Black line shows the mean across subjects. C, The
relationship between eccentricity and receptive field size. The eccentricities of the estimated receptive field centers were binned into
five levels with an interval of 1°. The mean receptive field size for each eccentricity level was calculated across voxels and plotted as
a function of the eccentricity.
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LOC and FFA, the vertical positions of the RFs were
narrowly distributed compared with V1–V4, whereas the
horizontal positions of the RFs were distributed with sim-
ilar degrees for all visual areas (ANOVA on the standard
deviation of RF positions across visual areas, F(5,24) �
1.55, p � 0.2117 for the horizontal dimension, F(5,24) �
41.64, p � 4.635 � 10�11 for the vertical dimension; t test
between the horizontal and vertical dimensions, t(4) �
1.78, 7.82, 2.02, 3.27, 5.17, and 4.99, p � 0.1498, 0.0014,
0.1140, 0.0309, 0.0067, and 0.0076 for V1–V4, LOC, and
FFA, respectively). This suggests that the lower decoding
accuracies of LOC and FFA for the vertical dimension
could be attributable to the narrow distribution of the RFs
along this dimension, which is a factor not related to RF
size.

The brain areas compared here contained different
numbers of voxels. So, to confirm that the observed

A

B

Figure 3. Position decoding accuracy from each visual area. A, Examples of true and predicted trajectories of the ball position. The
predicted trajectories were produced by maximum likelihood estimation using the receptive field models. B, Decoding accuracy.
The ball position was predicted from brain activity by maximum likelihood estimation with the RF models (upper) and SVR (lower). The
accuracy was evaluated using the correlation coefficient between the true and predicted trajectories. The mean accuracies across
subjects are shown. The calculations were performed separately for the horizontal (black line) and vertical (gray line) positions. Error
bars show the 95% CIs across subjects.

Video 1. Examples of true and predicted ball
positions. The predicted positions were pro-
duced by maximum likelihood estimation using
the RF models.
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pattern of decoding performance across those visual ar-
eas was not due to the difference in the number of voxels
used for prediction, we conducted the same decoding
analysis with a fixed number of randomly selected voxels
within each brain area. Similar comparison results were
obtained independent of the number of voxels (Fig. 5A, B).

Our results suggest that each visual area encodes po-
sition information similarly regardless of the difference in
RF size if RF centers are equally distributed. However, it is
possible that RF size can affect position coding when
voxels are spatially restricted. We performed the position
decoding analysis after excluding the voxels whose RF
centers were near the stimulus position, while changing
the threshold for the distance between a stimulus position
and an RF center (Fig. 6). To evaluate how steeply the
decoding accuracy is degraded, an exponential decay
function was fitted to the curve of the accuracy obtained
from each visual area and subject. The resultant decay
constant (�) was used as a measure of the sensitivity to
the distance threshold. We found that the decoding ac-
curacies (tested on the horizontal dimension) for lower
visual areas degraded more sharply than those for higher
visual areas (ANOVA on decay constants across visual
areas, F(5,24) � 5.47, p � 0.0017). Higher visual areas may
be better at compensating for the loss of information with
the large RFs of the remaining voxels. This observation
suggests that RF size can be critical for encoding stimulus
position with a limited neural population, although it is

compatible with the fact that position encoding by the full
population is equally accurate regardless of RF size.

Discussion
In the present study, to investigate the relationship

between the size of RFs and retrievable position informa-
tion, we estimated RF sizes for fMRI voxels and evaluated
how accurately the position of a seen object was pre-
dicted from activity patterns in each of six representative
visual areas. We found that even with larger RF sizes, the
position of the stimulus was predicted from activity pat-
terns in high-level visual areas with accuracies similar to
those of low-level visual areas, especially for the horizon-
tal position.

In the comparison of the decoding accuracy between
the horizontal and vertical positions, the decoding accu-
racies for activity in LOC and FFA regarding the vertical
position were lower than those for the horizontal position,
and this anisotropy was not observed for the lower visual
areas (Fig. 3B). Although a previous fMRI study came to a
similar conclusion on the anisotropy in LOC and FFA
(Carlson et al. 2011), our study compared lower to higher
visual areas along the ventral cortical hierarchy using
quantitative models. Furthermore, we demonstrated that
these lower decoding accuracies are accompanied by a
narrow spatial distribution of RFs for the corresponding
direction (Fig. 4), which may be a cause of the horizontal-
vertical asymmetry in decoding accuracy. Although simi-

A

B

Figure 4. Spatial distribution of estimated receptive fields. A, Examples of the distribution of estimated receptive field centers. Each
circle shows the position of the receptive field center of a single voxel. We plotted the positions for the voxels in V1 and FFA from
subject S3. B, Standard deviation of the positions of receptive field centers. The mean values across subjects are shown. Error bars
show the 95% CIs across subjects.
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A

B

Figure 5. Decoding accuracy after matching the numbers of voxels. A, Decoding accuracy with 20 voxels. The format is the same as
in Fig. 3B. We performed decoding analysis with RF models on brain activity from 20 randomly selected voxels in each visual area.
Decoding accuracies were first averaged across 100 instances of random voxel selection in individual subjects, and then averaged
across subjects. Error bars show the 95% CIs across subjects. After matching the numbers of voxels, we observed a similar tendency as
in Fig. 3B. This indicates that the tendency across visual areas was not caused by the difference in the number of voxels. B, The relationship
between decoding accuracy and the number of voxels. Decoding analysis was performed with a fixed number of randomly selected voxels
with the same procedure. Mean decoding accuracies were plotted as functions of the number of used voxels.

Figure 6. Decoding accuracy after excluding voxels whose receptive field centers are near the stimulus position. For each fMRI sample,
we selected the receptive fields whose distances between the receptive field centers and the stimulus position were more than a threshold,
and the stimulus position was predicted with those receptive fields by maximum likelihood estimation. The mean horizontal decoding
accuracies across subjects for six visual areas are plotted as functions of the threshold. Error bars show the 95% CIs across subjects.
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lar decoding performance was obtained regardless of RF
size in the condition where the centers of RFs used for
prediction were distributed equally and widely, we also
showed that when the voxel population was limited, RF
size was critical for decoding accuracy (Fig. 6). Thus, RF
size may be important for spatial coding when a small
neural population is used for inferring stimulus position.
Further investigation of such collective properties of RFs
would be useful for characterizing the mechanism and
function of each brain region in representing position
information.

Taken together, our findings provide experimental evi-
dence that large RFs do not necessarily imply the loss of
position information at the population level. Regions in the
higher visual cortex, such as LOC and FFA, appear to en-
code as much position information as the lower visual cor-
tex, especially in the horizontal dimension, regardless of RF
size. Although our results demonstrate the availability of rich
position information in higher visual cortex, it remains to be
seen whether and how such information is used in later
neural processing for recognition and behavior.
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