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Abstract

The ventrolateral periaqueductal gray (VIPAG) constitutes a major descending pain modulatory system and is a crucial
site for opioid-induced analgesia. A number of previous studies have demonstrated that glutamate and GABA play
critical opposing roles in nociceptive processing in the vIPAG. It has been suggested that glutamatergic neurotrans-
mission exerts antinociceptive effects, whereas GABAergic neurotransmission exert pronociceptive effects on pain
transmission, through descending pathways. The inability to exclusively manipulate subpopulations of neurons in the
PAG has prevented direct testing of this hypothesis. Here, we demonstrate the different contributions of genetically
defined glutamatergic and GABAergic VIPAG neurons in nociceptive processing by employing cell type-specific
chemogenetic approaches in mice. Global chemogenetic manipulation of vVIPAG neuronal activity suggests that vVIPAG
neural circuits exert tonic suppression of nociception, consistent with previous pharmacological and electrophysio-
logical studies. However, selective modulation of GABAergic or glutamatergic neurons demonstrates an inverse
regulation of nociceptive behaviors by these cell populations. Selective chemogenetic activation of glutamatergic
neurons, or inhibition of GABAergic neurons, in VIPAG suppresses nociception. In contrast, inhibition of glutamatergic
neurons, or activation of GABAergic neurons, in VIPAG facilitates nociception. Our findings provide direct experimental
support for a model in which excitatory and inhibitory neurons in the PAG bidirectionally modulate nociception.
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The periaqueductal gray (PAG) is a midbrain region critical for the modulation of pain. However, the roles played by
the distinct cell types within the PAG in nociceptive processing are poorly understood. This work addresses the
divergent roles of glutamatergic and GABAergic PAG neuronal subpopulations in nociceptive processing. We
demonstrate that activation of glutamatergic neurons or inhibition of GABAergic neurons suppresses nociception.
However, inhibition of glutamatergic neuronal activity or activation of GABAergic neuronal activity potentiates
Knociception. This report identifies distinct roles for these neuronal populations in modulating nociceptive processing. /

ignificance Statement

Introduction
The periaqueductal gray (PAG), an evolutionarily con-
served neurosubstrate in the midbrain, regulates a wide of
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complex behaviors, including pain (Basbaum and Fields,
1978; Graeff et al., 1993; Behbehani, 1995; Bandler and
Keay, 1996; Holstege, 2014; Tovote et al.,, 2016;

Author contributions: V.K.S. and R.W.G. designed research; V.K.S., B.A.C.,
J.G.G.R., and D.E.O. performed research; M.R.B. contributed unpubli-
shed reagents/analytic tools; V.K.S., J.G.G.R.,, B.A.C., RW.G., AM.G.,


http://orcid.org/0000-0002-9491-2793
http://orcid.org/0000-0003-4713-7816
http://orcid.org/0000-0002-5428-4251
http://dx.doi.org/10.1523/ENEURO.0129-16.2017

eMeuro

Watson et al., 2016). The ventrolateral PAG (VIPAG) is a
major site of endogenous opioid-induced pain suppres-
sion, and electrical stimulation of the VIPAG produces
profound analgesia (Reynolds, 1969; Liebeskind et al.,
1973; Mayer and Liebeskind, 1974; Hosobuchi et al.,
1977; Baskin et al., 1986; Fields, 2004). The robust mod-
ulatory role of the vVIPAG on spinal nociceptive processing
is mediated by descending projections from the vIPAG via
the rostral ventromedial medulla (RVM; Liebeskind et al.,
1973; Basbaum and Fields, 1979; Bennett and Mayer,
1979; Hayes et al., 1979; Beitz et al., 1983; Duggan and
Morton, 1983; Watkins et al., 1983; Morton et al., 1984;
Moreau and Fields, 1986; Morgan et al., 1989; Urban and
Smith, 1994; Pertovaara et al., 1996; Waters and Lumb,
1997; Antal and Odeh, 1998; Budai and Fields, 1998;
Odeh and Antal, 2001; Maione et al., 2006; Waters and
Lumb, 2008).

Previous studies have suggested that the vIPAG has a
bidirectional role in the modulation of nociception. Non-
specific activation of vVIPAG neurons produces analgesia,
whereas inhibition of VIPAG produces hyperalgesia to
noxious stimulation (Reynolds, 1969; Liebeskind et al.,
1973; Moreau and Fields, 1986; Depaulis et al., 1987;
Siegfried and de Souza, 1989). It is tempting to speculate
that output from the vVIPAG has a purely analgesic action.
However, the VIPAG comprises diverse subpopulations of
neurons with distinct neurochemical properties that reg-
ulate excitatory and inhibitory neurotransmission (Behbe-
hani and Fields, 1979; Moss and Basbaum, 1983; Moss
et al., 1983; Moreau and Fields, 1986; Behbehani et al.,
1990; Behbehani, 1995; Vaughan et al., 1997; Hahm et al.,
2011; Ho et al., 2013). Microinjection of glutamate recep-
tor agonists or GABA antagonists into the vVIPAG leads to
global activation of neurons and produces antinociceptive
effects to noxious stimuli (Moreau and Fields, 1986; Ness
and Gebhart, 1987; Carstens et al., 1988; Jacquet, 1988;
Jones and Gebhart, 1988; Jensen and Yaksh, 1989;
Sandkuhler et al., 1989; Carstens et al., 1990; Budai and
Fields, 1998; Morgan et al., 2003). In contrast, microin-
jecting glutamatergic antagonists or GABA agonists, pre-
sumably leading to global suppression of neural activity in
the VIPAG, produces hyperalgesia (Moreau and Fields,
1986; Depaulis et al., 1987; Siegfried and de Souza, 1989;
Behbehani et al., 1990). These studies suggest that in the
context of a noxious stimulus, GABAergic neurotransmis-
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sion in the VIPAG is pronociceptive, although the source
of the GABAergic inputs to the vVIPAG cannot be deter-
mined (Reichling and Basbaum, 1990a, 1990b). Collec-
tively, a large number of prior studies suggest that
glutamatergic and GABAergic neurons within the vIPAG
play critical and complex roles in processing nociception
(Behbehani and Fields, 1979; Moreau and Fields, 1986;
Millan et al., 1987; Sandkdhler et al., 1989; Siegfried and
de Souza, 1989; Vaughan et al., 1997). Based on these
studies, the vIPAG GABA disinhibition hypothesis has
been proposed (Basbaum and Fields, 1978; Fields, 2004;
Lau and Vaughan, 2014). In this hypothesis, GABAergic
interneurons exert tonic inhibition over vIPAG glutamater-
gic neurons, which are thought to be output neurons that
project to the RVM to facilitate the descending inhibition
of nociception (Vaughan et al., 1997; Budai and Fields,
1998; Wang and Wessendorf, 2002; Maione et al., 2006;
Starowicz et al., 2007; Heinricher et al., 2009; Park et al.,
2010; Tovote et al., 2016). Despite the wealth of evidence
supporting this model, the distinct roles of GABAergic and
glutamatergic neuronal populations in descending vIPAG
pain modulation have not been directly investigated. In
this study, we use cell type-specific chemogenetic ma-
nipulations of neuronal activity in the vIPAG to test the
hypothesis that GABAergic neurons are pronociceptive
and glutamatergic neurons are antinociceptive.

Materials and Methods

Animals

All experiments were conducted in accordance with the
National Institutes of Health guidelines and with approval
from the Animal Care and Use Committee of Washington
University School of Medicine. Male, 8- to 12-week-old,
heterozygous Slc32a1"2-*" (Vgat-ires-Cre, selectively targets
Vgat™ GABAergic inhibitory neurons), Slc17a6™2-*" (Vglut2-
ires-Cre, selectively targets Vglut2* glutamatergic excitatory
neurons, and C57BL\6J mice were used (Vong et al.,
2011). Mice were purchased from Jackson Laboratories
(C57BL\6J, Vgat Cre, stock number 016962 and Vglut2
Cre stock number 016963) and colonies were established
in our facilities. Experimenters were blind to treatment and
genotype.

Viral constructs and surgery
Adeno-associated viruses (AAV8) were used to achieve Cre-

independent chemogenetic vector expression: hM3Dg-
mCherry (rAAV8/hSyn-hM3Dg-mCherry; 3.2 X 10"
particles/ml),  hM4Di-mCherry  (rAAV8/hSyn-hM4Di-

mCherry; 2 X 10" particles/ml), and control eGFP
(rAAV8/hSyn-eGFP; 8 X 10'2 particles/ml). Adeno-
associated viruses (AAV5) were used to achieve Cre-
dependent vector expression: hM3Dg-mCherry (rAAV5/
hSyn-DIO-hm3Dg-mCherry; 6 X 102 particles/ml),
hM4Di-mCherry (rAAV5/hSyn-DIO-hm4Di-mCherry; 6 X
10"2 particles/ml), and control eGFP (rAAV5/hSyn-DIO-
eGFP; 3.4 X 10" particles/ml). All viral vectors were
acquired from the University of North Carolina Vector
Core Facility. Before surgery, mice were anesthetized with
isoflurane and secured in a stereotactic frame (David Kopf
Instruments). A small midline dorsal incision was per-

eNeuro.org


mailto:gereaur@wustl.edu.
http://dx.doi.org/10.1523/ENEURO.0129-16.2017
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

eMeuro

formed to expose the skull and bilateral viral injections
were performed using the following coordinates: VIPAG,
—4.8-4.9 mm from bregma, +0.3-0.4 mm lateral from
midline, and 2.7-2.9 mm ventral to skull. Injections of 150
nL of the desired viral vectors into the VIPAG were per-
formed at a rate of 100 nl per 60 s.

Chemogenetic manipulation

Three weeks after viral injections, mice were injected
intraperitoneally with clozapine N-oxide (CNO, BML-NS105
from Enzo life sciences) 60 min before beginning behav-
ioral assessment, and data were collected between the
second and third hour after injection. All baselines for
thermal and mechanical sensitivity were recorded two
weeks after the viral injections and one week before the
CNO administration. The doses of CNO were chosen
based on preliminary pilot experiments designed to de-
termine the minimal dose needed to activate designer
receptor exclusively activated by designer drugs (DREADD)
receptors in the vVIPAG of C57BL\6J mice, Vgat-ires-Cre
and Vglut2-ires-Cre mice. We assessed the response of
these different mouse lines to various doses of CNO to
identify the minimal doses required to activate DREADDs
(data not shown). In non-Cre-dependent studies, we ad-
ministered 1 mg/kg CNO for both hM3Dq activation and
hM4Di inhibition. In Vgat Cre mice, we administered 3
mg/kg CNO for both hM3Dq activation and hM4Di inhibi-
tion. In Vglut2 Cre mice, we administered 2 mg/kg CNO
for both hM3Dq activation and hM4Di inhibition.

Pain behavior assessment

To evaluate nociception, mechanical withdrawal thresh-
olds and thermal withdrawal latencies were assayed. Mice
were tested for baseline responses to mechanical and
thermal stimuli, as previously described (O’Brien et al.,
2013). For the assessment of mechanical withdrawal
threshold, von Frey filaments (North Coast Medical) were
applied bilaterally to the hind paws of the mice using the
up-down method. Two to three trials were performed on
each hind paw for each mouse. The average 50% with-
drawal threshold was calculated for each paw individually
and then averaged to obtain a threshold value for each
mouse. The Hargreaves test was performed to evaluate
heat sensitivity thresholds, measuring latency of with-
drawal to a radiant heat source (IITC Life Science, Model
390). We applied the radiant heat source bilaterally to the
hind paw and measured the latency to evoke a with-
drawal. Three to five replicates were acquired per hind
paw per mouse, and values for both paws were averaged.

Electrophysiology

To determine the functional effects of chemogenetic
manipulations in vVIPAG neurons, we performed targeted
whole-cell patch-clamp recordings in acute coronal slices
from both Vgat- and Vglut2-Cre mice expressing either
hM3Dq or hM4Di receptors. Mice used for electrophysi-
ology and behavioral studies were between 8 and 12
weeks of age. Three weeks after viral infection of vIPAG
neurons, coronal slices containing the vIPAG were pre-
pared as previously described (Siuda et al., 2015).
GABAergic and glutamatergic neurons in the vIPAG were

March/April 2017, 4(2) e0129-16.2017

New Research 3 0of 13

visualized through a 40X objective using IR-differential
interference contrast (DIC) microscopy on an Olympus
BX51 microscope, and mCherry+ cells were identified
using epifluorescent illumination with a green LED (530
nm; Thorlabs), coupled to the back fluorescent port of the
microscope. Whole-cell recordings of VIPAG GABAergic
and glutamatergic neurons expressing hM3Dg-mCherry
and hM4Di-mCherry were performed using a Heka EPC
10 amplifier (Heka) with Patchmaster software (Heka).
Following stable 5-min whole-cell recordings (baseline),
the direct effects of either hM3Dq or hM4Di receptor
expression on cellular excitability was isolated by block-
ing AMPA/KARs (10 uM NBQX, Abcam), NMDARs (50 uM
D-APV, Abcam), GABA,Rs (100 wM picrotoxin, Abcam),
and GABAgRs (50 uM baclofen, Abcam). aCSF solution
containing 10 uM CNO added to the antagonist cocktail
above was bath applied to the brain slice.

Immunohistochemistry

To perform histologic confirmation of virus expression
and injection sites, C57, Vgat Cre, and Vglut2 Cre mice
expressing hM3Dg-mCherry, hM4Di-mCherry, and EGFP
virus were deeply anesthetized with ketamine/xylazine
cocktail at the end of every experiment and then perfused
with 20 ml of PBS and 20 ml of a 4% paraformaldehyde
PBS solution (PFA). Brains were removed, postfixed in
4% PFA overnight at 4°, and then immersed in 30%
sucrose for cryoprotection. Using a cryostat, 30-um tis-
sue sections were collected and stored in PBS, containing
0.4% sodium azide, at 4°. After washing the sections in
PBS 1X, we incubated the tissues in blocking solution
containing 5% normal goat serum and 0.2% Triton X-100
PBS solution for 1 h at room temperature. Primary anti-
bodies against mCherry (Mouse, Clontech 632392; 1:500)
and GFP (rabbit polyclonal, Life Technologies A11122,
1:500) were diluted in blocking solution and incubated
overnight at 4°C. After three 10-min washes, tissues were
incubated for 1 h at room temperature with secondary
antibodies [Life Technologies: Alexa Fluor 488 donkey
anti rabbit IgG (1:300); Alexa Fluor 488 goat anti rabbit
(1:300); Alexa Fluor 555 goat anti mouse (1:300); and
Neurotrace (435/455nm, 1:500)]. Sections were mounted
with Vectashield (H-1400) hard mounting media and im-
aged on a Nikon Eclipse 80i epifluorescence microscope.

Fluorescence in situ hybridization (FISH)

Following rapid decapitation of mice, brains were flash
frozen in —50°C 2-methylbutane and stored at —80°C for
further processing. Coronal sections containing the PAG,
corresponding to the injection coordinates used in the
behavioral experiments, were cut at 20 um at —20°C and
thaw-mounted onto Super Frost Plus slides (Fisher).
Slides were stored at -80°C until further processing. FISH
was performed according to the RNAScope 2.0 Fluores-
cent Multiple Kit User Manual for Fresh Frozen Tissue
(Advanced Cell Diagnostics) as described previously
(Wang et al., 2012). Slides containing PAG coronal brain
sections were fixed in 4% PFA, dehydrated, and pre-
treated with protease IV solution for 30 min. Sections
were then incubated with target probes for mouse Vglut2
(slc17a6, accession number NM_080853.3, probe region
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1986-2998), Vgat (slc32a1, accession number NM_009508.2,
probe region 894-2037), and Cre (accession number
KC845567.1, probe region 1058-2032). All target probes
consisted of 20 double Z oligonucleotides and were ob-
tained from Advanced Cell Diagnostics. Following probe
hybridization, sections underwent a series of probe signal
amplification steps (AMP1-4) followed by incubation of
fluorescent probes (Alexa Fluor 488, Atto 550, Atto 647),
designed to target the specified channel associated with
the probes. Slides were counterstained with 4’,6-
diamidino-2-phenylindole (DAPI; RNAScope), and cover-
slips were mounted with Vectashield Hard Set mounting
medium (Vector Laboratories). Images were obtained on a
Leica TCS SPE confocal microscope (Leica), and Appli-
cation Suite Advanced Fluorescence (LAS AF) software
was used for analyses.

Statistics

Throughout the study, researchers were blinded to all
experimental conditions. At least two to three replicate
measurements were performed and averaged in all be-
havioral assays. The studies were designed to compare
behavioral readouts following CNO to baseline values
before CNO administration. This was done using paired t
tests to account for interindividual variability among mice
across different cohorts. The control eGFP group was
included throughout our study to determine whether CNO
administration or DREADD expression had off-target ef-
fects in the behaviors that we tested. All datasets were
evaluated for normality using the D’Agostino and Pearson
omnibus normality test. A parametric test was used only
when normality was confirmed. If normality could not be
confirmed, the nonparametric Wilcoxon matched pairs
test was used.

Results

Global chemogenetic manipulation of vIPAG activity
suggests bidirectional modulation of nociceptive
behaviors

We used a chemogenetic approach to investigate
whether selectively manipulating activity of resident neu-
rons in the vIPAG can modulate different nociceptive
modalities. DREADDs exploit selective expression of
mutated muscarinic receptors that are responsive to an
exogenously administered, normally inert ligand, CNO
(Rogan and Roth, 2011). Adeno-associated virus type 8
(AAV8), carrying neuron-specific stimulatory (hM3Dq) or
inhibitory (hM4Di) DREADD fused with mCherry, was mi-
croinjected bilaterally into the vIPAG (Fig. 1A). Robust
expression of DREADDs, restricted to the VIPAG, was
observed three weeks after AAV8/hSyn-hM3Dg-mCherry
(Fig. 1B) or AAV8/hSyn-hM4Di-mCherry injection (Fig.
1C). In mice expressing the stimulatory DREADD (hM3Dq)
in VIPAG neurons, CNO (1 mg/kg, i.p.) injection resulted in
a significant increase in paw withdrawal latencies (PWLs)
to thermal stimulation compared with baseline PWLs be-
fore CNO administration but did not alter paw withdrawal
thresholds (PWTs) to mechanical stimuli compared with
baseline PWTs before CNO administration (Fig. 1E; t40) =
3.674, ##p = 0.0043, n = 11; Fig. 1H; t4, = 0.3489, p =
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0.73, n = 11). On the other hand, in mice expressing the
inhibitory DREADD (hM4Di) in vIPAG neurons, CNO (1
mg/kg, i.p.) injection resulted in a significant decrease in
PWLs and PWTs compared with baseline (Fig. 1F; t4y =
6.693, *#*+xp < 0.0001, n = 12; Fig. 1/; ¥p < 0.05, n = 11),
indicating development of thermal and mechanical hyper-
sensitivity. To confirm that CNO administration did not
have any off-target effects on PWLs and PWTs, control
mice expressing eGFP were administered CNO (1 mg/kg),
which had no effect on PWLs or PWTs when compared
with baseline (Fig. 1D; t44, = 0.2572, p = 0.80, n = 12;
Fig. 1G, tg = 0.2945, p = 0.77, n = 9). Taken together,
these findings demonstrate that globally activating vIPAG
neurons attenuates nociception, while inhibiting them po-
tentiates nociception, consistent with prior studies using
pharmacologic activation or inhibition of the vVIPAG neurons
(Moreau and Fields, 1986; Carstens et al., 1988; Jones and
Gebhart, 1988; Jensen and Yaksh, 1989; Siegfried and de
Souza, 1989; Behbehani et al., 1990; Carstens et al., 1990;
Vaughan et al., 1997; Budai and Fields, 1998; Morgan et al.,
2003).

The role of vVIPAG GABAergic and glutamatergic
neuronal populations in nociceptive processing

The VIPAG is comprised of both inhibitory GABAergic
and excitatory glutamatergic neurons, and we hypothe-
sized that these neuronal populations differentially regu-
late nociceptive processing. Double-label RNA-FISH in
the VIPAG of c57-mice revealed that GABAergic neurons
(Vgat transcripts) and glutamatergic neurons (Vglut2 tran-
scripts) show no overlap in expression in the PAG and,
thus, are distinct populations (Fig. 2A,B). To selectively
test the functional contributions of vVIPAG GABAergic and
glutamatergic neurons in modulating nociceptive behav-
iors, we used Vgat-ires-Cre and Vglut2-IRES-Cre mice to
target and manipulate the activity of GABAergic and glu-
tamatergic neurons, respectively. To determine the spec-
ificity of Cre in targeting Vgat™ neurons in Vgat-IRES-Cre
mice or in targeting Vglut2* neurons in the Vglut2-IRES-
Cre mice, we performed RNA-FISH using probes for Vgat,
Vglut, and Cre in VIPAG slices obtained from Vgat Cre and
Vglut2 Cre mice. We observed 79 = 4.1% of Vglut2™
transcripts in the VIPAG colabel with Vglut2 Cre-expressing
neurons, and 97.5 + 2.5% Vglut2 Cre-expressing neurons in
the vIPAG colabel with Vglut2™ transcripts (Fig. 2C,E-J).
We also observed 92 + 4.5% of Vgat™ transcripts in the
VIPAG colabel with Vgat Cre-expressing neurons, and
95.5 + 4.2% Vgat Cre-expressing neurons in the vIPAG
colabel with Vgat™ transcripts (Fig. 2D,K-P). Our double-
label RNA-FISH studies revealed that Vgat and Vglut2 Cre
mice faithfully label vIPAG GABAergic and Vglut2* gluta-
matergic neuronal populations, as described previously
for other brain regions (Vong et al., 2011).

To selectively test the functional contributions of vIPAG
GABAergic and glutamatergic neurons in modulating no-
ciceptive behaviors, we used Cre-dependent DREADD
expression in Vgat-ires-Cre and Vglut2-ires-Cre mice to
target GABAergic and glutamatergic neurons, respec-
tively. Virus carrying Cre-dependent stimulatory (hM3Dq)
or inhibitory (hM4Di) DREADDs fused with mCherry were
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Figure 1. Global chemogenetic manipulation of vVIPAG activity suggests parallel bidirectional modulation of nociceptive behaviors.
A, Constructs used in viral targeting of AAV8 hM3Dg-mCherry, AAV8 hM4Di-mCherry and AAV8-EGFP via bilateral injections into the
VIPAG. B, C, Representative images of coronal sections containing VIPAG demonstrating restricted viral expression following
microinjection of the AAV8 hM3Dq (B) and hM4Di (C) into the VIPAG. D, G, Relative to pretreatment baseline values, CNO (1 mg/kg,
i.p.) did not have any significant effects on PWLs in mice expressing the control EGFP construct. E, H, CNO (1 mg/kg, i.p.)
administration in hM3Dg-injected mice resulted in a significant increase in PWLs but not in PWTs. F, I, CNO (1 mg/kg, i.p.)
administration in hM4Di-injected mice resulted in a significant decrease in PWLs and PWTs. #p < 0.05, *xp < 0.005, **%p < 0.0001.

Scale bars, 300 and 35 um, 4X and 10X, respectively.

injected into the VIPAG of Vgat-Cre mice or Vglut2-Cre mice.
Three weeks after DREADD injection, we prepared acute
coronal slices of the vVIPAG from Vgat-Cre and Vglut2-Cre
mice and targeted mCherry™ neurons in VIPAG for whole-
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cell recordings (Fig. 3A). hM3Dg-expressing VIPAG neurons
were held at hyperpolarized membrane potentials, and a
brief bath application of 10 uM CNO caused a transient
depolarization and robust action potential firing in both Vgat
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Figure 2. RNA-FISH demonstrates segregation of VIPAG GABAergic and glutamatergic neurons and specificity of Cre in targeting
Vgat+ neurons in the Vgat-IRES-Cre mice or Vglut2+ neurons in the Vglut2-IRES-Cre mice. A, Double RNA-FISH for Vgat (green) and
Vglut2 (red) shows that GABAergic and glutamatergic neurons in the PAG are nonoverlapping populations. Scale bar, 200 um.
Counterstaining (blue) is DAPI. B, High-magnification image showing no colocalization of GABAergic and glutamatergic neurons in the
PAG. Scale bar, 60 um. C, 79 = 4.1% of cells positive for Vglut2 transcripts in the vIPAG colabel with Vglut2 Cre-expressing neurons,
and 97.5 + 2.5% of Vglut2 Cre-expressing neurons in the VIPAG colabel with Vglut2™ transcripts (N = 2 mice). D, 92 + 4.5% of cells
positive for Vgat transcripts in the vVIPAG colabel with Vgat Cre-expressing neurons, and 95.5 = 4.2% of Vgat Cre-expressing neurons
in the VIPAG colabel with Vgat™ transcripts (N = 2 mice). E-G, Double RNA-FISH for Vglut2 (red) and Cre (green) shows extensive
colocalization of Vglut2* transcripts with Cre-expressing neurons in the vVIPAG obtained from Vglut2 Cre mice. Scale bar, 60 um. H-J,
High-magnification image shows extensive colocalization of Vglut2* transcripts with Cre-expressing neurons in the vIPAG. Scale bar,
15 um. K, M, Double RNA-FISH for Vgat (red) and Cre (green) shows extensive colocalization of Vgat* transcripts with Cre-expressing
neurons in the VIPAG obtained from Vgat Cre mice. Scale bar, 60 um. N-P, High-magnification image shows extensive colocalization
of Vgat™ transcripts with Cre-expressing neurons in the vIPAG. Scale bar, 15 um.
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Figure 3. Functional characterization of G- and G;-DREADDs in VIPAG neurons of Vgat-Cre and Vglut2-Cre mice. A, Infrared DIC
image of VIPAG Vgat* neuron expressing hM4Di-mCherry. Images were acquired following CNO stimulation. B, Whole-cell
current-clamp recording from an hM3Dg-expressing PAG neuron. Brief bath application of 10 uM CNO caused a transient
depolarization and robust action potential firing in Vgat™ and Vglut™ neurons. C, Voltage trace showing that bath perfusion with 10
uM CNO caused prolonged membrane hyperpolarization and silencing of both Vgat* and Vglut™ vIPAG neurons. Dashed lines in B
and C represent the membrane potential of the cells before application of CNO. D, G, Quantification of the CNO effects on membrane
potential and input resistance in grouped Vgat™ and Vglut2* neurons (N = 8 for Vgat™ and Vglut2* neurons). E-I, Voltage traces
showing responses to a hyperpolarizing current of -20 pA and a depolarizing current injection of either 1X rheobase (purple traces)
or 2X rheobase (blue traces) in both Vgat™ (E, H) and Vglut2™ (F, I) neurons. In hM3Dg-expressing neurons, bath application of CNO
elicited increased action potential firing in response to the same stimulus (E, H, green traces). In hM4Di* neurons, CNO perfusion
decreased neuronal excitability to supratheshold stimuli. B, C, Scale bars, 20 mv and 10 s; E-I, Scale bars, 10 mv and 100 ms. All
values are mean = SEM.
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K™ channels (Sternson and Roth, 2014; Urban and Roth,
2015; Fig. 3D,G).

We also investigated how CNO modulates membrane
excitability in response to depolarizing step current injec-
tions. In hM3Dg-expressing neurons, we observed a large
increase in the number of action potentials elicited during
a 1X rheobase current following CNO stimulation in slices
from both Vgat- and Vglut2-Cre mice (Fig. 3E,H). Suprath-
reshold current injections of 2X rheobase elicited sus-
tained high-frequency action potential firing in both
neuronal subtypes (Fig. 3F,/, blue traces), and CNO ap-

and Vglut2 neurons (Fig. 3B). To test the effects of G-
coupled inhibition with hM4Di, we monitored neuronal ac-
tivity while holding cells with a depolarizing current injection,
which elicited persistent action potential firing in both Vgat
and Vglut2 neurons. Bath perfusion with 10 uM CNO re-
sulted in prolonged membrane hyperpolarization and de-
creased firing of both cell types (Fig. 3C). Quantification of
hM3Dg-expressing neurons showed that CNO depolarized
neurons by an average of 3.6 mV and caused a small
decrease in the input resistance (Fig. 3D,G). In contrast,
activation of hM4Di hyperpolarized neurons by an average

of 5.6 mV, and substantially reduced input resistance, con-
sistent with CNO-induced G;-coupling to inwardly rectifying
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plication dramatically reduced membrane excitability to
an identical suprathreshold stimulus in mice injected with
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Figure 4. Chemogenetic manipulation of VIPAG GABAergic neurons bidirectionally modulates nociceptive behaviors. A, lllustration
showing viral targeting strategy of AAV5-hSyn-DIO-hM3Dg-mCherry, AAV5-hSyn-DIO-hM4Di-mCherry, and AAV5-hSyn-DIO-EGFP
bilaterally injected into the vIPAG of Vgat Cre mice. B, C, Representative images of coronal sections containing vIPAG showing
restricted viral expression following microinjection of AAV5-hSyn-DIO-hM3Dq (B) or AAV5-hSyn-DIO-hM4Di (C) into the VIPAG of Vgat
Cre mice. E, H, CNO (3 mg/kg, i.p.) administration resulted in a significant decrease in PWLs and PWTs in Vgat::nM3Dq mice. F, I,
CNO administration resulted in a significant increase in PWLs but not in PWTs in Vgat::hM4Di mice. D, G, CNO had no significant
effect on PWLs or PWTs in Vgat Cre mice expressing the control EGFP construct compared with baseline PWLs and PWTs before
CNO administration. All values are mean = SEM. Student’s t test; #p < 0.05, ##p < 0.005. Scale bars, 25 um.

hM4Di constructs (Fig. 3F,/, green traces). This confirmed
that we are able to bi-directionally modulate GABAergic
and glutamatergic neuron excitability in the vVIPAG using
hM3Dq and hM4Di DREADDs, and led us to explore the
contributions of these neuronal populations in nociceptive
processing.

To assess how VIPAG GABAergic neurons contribute to
nociceptive processing, we introduced Cre-dependent vi-
ral constructs containing either hM3Dq or hM4Di fused to
mCherry or control virus lacking the DREADDs (hSyn-
DIO-eGFP) into the VIPAG of Vgat-IRES-Cre mice (Fig.
4A). Three weeks after viral infection of VIPAG neurons,
restricted expression of the DREADD vectors was ob-
served in neurons within the vIPAG (Fig. 4B,C). CNO-
dependent (3 mg/kg, i.p.) activation of vVIPAG GABAergic
neurons via hM3Dq resulted in a significant decrease in
PWLs to a noxious thermal stimulus (Fig. 4E; tg = 4.403,
p = 0.0023, n = 9) and PWTs to a mechanical stimulus
(Fig. 4H; p = 0.0469, n = 7) compared with baseline. In
contrast, CNO-induced (3 mg/kg, i.p.) inhibition of vIPAG
GABAergic neurons expressing hM4Di resulted in a sig-
nificant increase in PWLs to noxious thermal stimulation
compared with baseline (Fig. 4F, tq3 =2.459, p = 0.0287,
n = 14) but did not have a significant effect on PWTs to
mechanical stimuli compared with baseline (Fig. 4/; t4, =
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0.5885, p = 0.5681, n = 12). CNO (3 mg/kg, i.p.) admin-
istration did not affect PWLs or PWTs in control mice
expressing DIO-EGFP when compared with baseline (Fig.
4D; tg) = 0.1837, p = 0.8584, n = 10) and (Fig. 4G; t =
0.2055, p = 0.8423, n = 9). Taken together, these results
demonstrate that activation of GABAergic vIPAG neurons
results in hypersensitivity to mechanical and noxious ther-
mal stimuli, while inhibiting the activity of GABAergic vl-
PAG neurons decreases sensitivity to noxious heat only.

To directly examine the role of VIPAG glutamatergic
neurons in nociceptive processing, Cre-dependent viral
constructs carrying hM3Dg-mCherry, hM4Di-mCherry, or
a control virus (hSyn-DIO-eGFP) were injected bilaterally
into the vIPAG of Vglut2-ires-Cre mice (Fig. 5A). Three
weeks after injection, we observed robust DREADD ex-
pression restricted to the vIPAG (Fig. 5B,C). Chemoge-
netic activation of vIPAG Vglut2 neurons expressing
hM3Dg with CNO (2 mg/kg, i.p.) significantly increased
PWLs to thermal stimuli compared with baselines before
CNO administration (Fig. 5E; t;) =2.375, p = 0.0368, n =
12) but did not significantly alter PWTs to mechanical
stimuli compared with baseline (Fig. 5H; tg = 0.8779,p =
0.405, n 9). To further examine the functional role of
intrinsic activity of vIPAG Vglut2 neurons, we adminis-
tered CNO (2 mg/kg, i.p.) to inhibit vVIPAG Vglut2 neurons
expressing hM4Di. This resulted in a significant decrease
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Figure 5. Chemogenetic modulation of VIPAG glutamatergic neurons bidirectionally modulates nociceptive behaviors. A, lllustration
showing the strategy for viral targeting of AAV5-hSyn-DIO-hM3Dg-mCherry, AAV5-hSyn-DIO-hM4Di-mCherry, and AAV5-hSyn-DIO-
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PWLs and PWTs before CNO administration. All values are mean = SEM, Student’s t test; *p < 0.05. Scale bars, 25 um.

in PWLs to a noxious heat stimulus compared with base-
line (Fig. 5F; n = 6, paired t test, p = 0.0313) and a
decrease in PWTs to a mechanical stimulus compared
with baseline (Fig. 5/; n = 6, paired t test, p = 0.0211).
Control virus-injected mice showed no alterations in
PWTs or PWLs on CNO (2 mg/kg, i.p.) administration
compared with baseline (Fig. 5D; tq, = 0.2897 p = 0.7786,
n = 10; Fig. 5G, p = 1, n = 6). These results demonstrate
that vVIPAG Vglut2 neurons exert tonic control over thermal
and mechanical nociceptive processing.

Discussion

Here, we report that global chemogenetic activation of
VIPAG neurons attenuates thermal nociception while in-
hibiting VIPAG neurons cause thermal and mechanical
hypersensitivity. Using cell type-specific chemogenetic ma-
nipulations, we found that activating GABAergic, or inhibiting
glutamatergic, neurons in VIPAG, causes thermal and me-
chanical hypersensitivity. In contrast, inhibiting GABAergic
or activating glutamatergic neurons attenuates thermal
sensitivity but has no effect on mechanical sensitivity. The
differential effects on thermal and mechanical sensitivity
suggest that distinct circuit elements within the vIPAG
regulate these two sensory modalities. These results pro-
vide new insights into the functional role of GABAergic
and glutamatergic neurons in the vIPAG in the modulation
of nociception.

March/April 2017, 4(2) e0129-16.2017

The vIPAG is known to be an essential component of
neural pathways that mediate stimulation and stress-
induced analgesia (Reynolds, 1969; Yeung et al., 1977;
Jones and Gebhart, 1988; Morgan et al., 1989; Hohmann
et al., 2005; Samineni et al., 2011). Consistent with these
previous studies, we found that global chemogenetic ac-
tivation of vIPAG neurons produced antinociceptive ef-
fects. We also show that chemogenetic inhibition of
VIPAG neurons leads to nociceptive hypersensitivity, con-
sistent with a bidirectional role of the vIPAG in the mod-
ulation of nociception (Moreau and Fields, 1986; Depaulis
et al., 1987; Heinricher et al., 1987; Ness and Gebhart,
1987; Carstens et al., 1988; Jacquet, 1988; Jones and
Gebhart, 1988; Jensen and Yaksh, 1989; Siegfried and de
Souza, 1989; Behbehani et al., 1990; Carstens et al.,
1990). The magnitude of antinociceptive effects observed
after global chemogenetic activation of VIPAG neurons is
modest relative to the robust effects produced by electrical
stimulation of the PAG or by microinjection of morphine,
GABA, receptor antagonists, or glutamate agonists into
the VIPAG (Reynolds, 1969; Liebeskind et al., 1973;
Moreau and Fields, 1986; Depaulis et al., 1987; Ness and
Gebhart, 1987; Carstens et al., 1988; Sandkunhler et al.,
1989; Siegfried and de Souza, 1989; Carstens et al.,
1990). Such a difference could be expected if the number
of neurons that are transduced with stimulatory DREADDs
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is small relative to the large number of neurons impacted
by electrical or pharmacologic approaches.

Although the VIPAG has been extensively studied for its
role in endogenous descending pain modulation (Reyn-
olds, 1969; Liebeskind et al., 1973; Basbaum and Fields,
1978; Sandkihler et al., 1989; Behbehani et al., 1990;
Vaughan et al., 1997; McGaraughty et al., 2003; Starowicz
et al., 2007; Morgan et al., 2008; Waters and Lumb, 2008;
Heinricher et al., 2009; Samineni et al., 2011; Wang et al.,
2012; Ho et al., 2013; Lau and Vaughan, 2014; Tovote
et al., 2016), previous studies have not yet determined
how distinct subpopulations of VIPAG neurons modulate
pain transmission. Inhibitory neurotransmission in the vi-
PAG is known to modulate nocifensive behaviors, since
microinjecting a GABA agonist produces pronociceptive
effects, while decreasing inhibitory neurotransmission by
microinjection of GABA antagonists into the vIPAG pro-
duces antinociceptive effects to noxious stimuli (Moreau
and Fields, 1986; Depaulis et al., 1987; Sandkuhler et al.,
1989; Budai and Fields, 1998; Morgan et al., 2003). Such
studies led some to propose the vIPAG GABA disinhibi-
tion analgesia hypothesis (Basbaum and Fields, 1978;
Fields, 2004). Corroborating this hypothesis, many stud-
ies have shown that mu opioid receptor agonists have
direct inhibitory effects on GABAergic neurons of vIPAG.
This causes analgesia when directly administered into the
VIPAG, suggesting that inhibition of GABAergic VIPAG
neuronal activity may be a major mechanism for opioid-
induced analgesia (Chieng and Christie, 1996; Vaughan
et al., 1997). The cellular mechanisms underlying the an-
algesic and hyperalgesic effects of manipulating inhibitory
and excitatory neurotransmission in the vIPAG have not
been directly evaluated (Moreau and Fields, 1986; Carstens
et al, 1988; Jacquet, 1988; Sandkihler et al., 1989;
Vaughan et al., 1997; Budai and Fields, 1998; Fields,
2004; Maione et al., 2006; Starowicz et al., 2007). It is not
known how distinct neuron subpopulations in the vIPAG
engage complex downstream circuits of the descending
pain modulation pathway. For the first time, we show that
chemogenetic activation of vIPAG GABAergic neurons
causes hypersensitivity to nociceptive stimuli while their
inhibition causes antinociception, consistent with the pro-
posed role of GABAergic vIPAG neurons in pain modula-
tion.

It has been hypothesized that GABAergic interneurons
exert tonic inhibition of VvIPAG glutamatergic neurons,
which are thought to be output neurons that project to the
RVM (Jacquet, 1988; Roychowdhury and Fields, 1996;
Vaughan et al., 1997; Wang and Wessendorf, 2002; Mor-
gan et al., 2008; Park et al., 2010; Hahm et al., 2011; Ho
et al,, 2013). These glutamatergic neurons have been
hypothesized to play a role in an analgesic modulatory
pathway (McGaraughty et al., 2003; Maione et al., 2006;
Starowicz et al., 2007), but this has not been selectively
demonstrated. In agreement with the GABA disinhibition
hypothesis, our RNA-FISH studies show that GABAergic
and glutamatergic neurons in the PAG are distinct popu-
lations. We also found that chemogenetic activation of
VIPAG glutamatergic neurons is antinociceptive, whereas
chemogenetic inhibition of these neurons is pronocicep-
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tive. Conversely, chemogenetic activation of GABAergic
neurons in the vIPAG produces hypersensitivity while in-
hibition of these neurons produces analgesia.

Surprisingly, we find that activation of vIPAG glutama-
tergic neurons or inhibition of GABAergic neurons atten-
uated thermal but not mechanical sensitivity. While there
are several possible explanations for this finding, we pro-
pose the hypothesis that distinct populations of inhibitory
neurons regulate mechanical and thermal nociceptive
modulatory pathways emanating from the vIPAG. Here,
we posit the presence of tonically active GABAergic neurons
regulating descending pathways for thermal nociception,
while the population regulating mechanical nociceptive
modulation might by quiescent. This would explain the
difference in effects of activating GABAergic neurons or
inhibiting glutamatergic neurons on mechanical nocicep-
tion. It is possible that the differences in the effects of
DREADD-dependent regulation are simply due to the
basal state of the neurons in question. That is, if the
neurons are quiescent at baseline, then activation of a
Gj-coupled DREADD might not affect descending modu-
lation. Similarly, a neuron that is firing at a relatively high
frequency at baseline might not be further stimulated by a
G,-coupled DREADD. Future studies are necessary to
determine the differences in neuronal populations and
circuits that code for mechanical versus thermal sensitiv-
ity. It is also possible that these results are simply due to
a ceiling effect in our von Frey measurements. That is, that
von Frey testing is not able to detect analgesic effects at
baseline. We do not favor this hypothesis, as treatment
with analgesic drugs can indeed increase PWTs in mice
(Anseloni and Gold, 2008).

We believe that our results should not be interpreted as
absolute, and we recognize that the behavioral changes
that we report should not be attributed to the entirety of
either the Vgat or Vglut2 vIPAG neuronal populations. The
PAG is comprised of molecularly diverse neuronal sub-
populations that express fast neurotransmitters and/or
neuropeptides (Mantyh, 1982; Moss and Basbaum, 1983;
Moss et al., 1983; Smith et al., 1994). In the hypothala-
mus, recent genetic analysis of anatomically defined neu-
rons has identified subpopulations that coexpress a
variety of neuroactive substances that were previously
thought to be exclusive to certain clusters (Romanov
et al., 2017). Therefore, it is likely that vIPAG GABAergic
and glutamatergic neurons can be further subdivided into
subpopulations based on their genetic identity and phys-
iology. Although we have only attempted to dissect the
roles of glutamatergic versus GABAergic VIPAG neurons
in pain modulation, future studies should examine the
interplay between other neuronal populations within the
VIPAG that can be defined with the expression of other
makers, such as neuropeptides, to assess their roles in
regulating nociceptive processing.

While the stimulation of VIPAG is predominantly associ-
ated with antinociceptive effects (Reynolds, 1969; Liebes-
kind et al., 1973; Carstens et al., 1988; Morgan et al., 1989;
Sandkdhler et al., 1989; Hohmann et al., 2005; Maione et al.,
2006; Starowicz et al., 2007; Samineni et al., 2011), recent
studies also identified facilitatory effects of the vIPAG in
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the maintenance of neuropathic pain (Pertovaara et al.,
1996; Pertovaara et al., 1997; Heinricher et al., 2004; Guo
et al., 2006; LU et al., 2010). We show here that chemo-
genetic activation of GABAergic neurons or inhibition of
glutamatergic neurons can lead to hypersensitivity to
mechanical and thermal stimuli, suggesting that any dis-
ruption of the balance between activity of the VIPAG
excitatory and inhibitory neurons might contribute to the
maintenance of chronic pain (Hahm et al., 2011; Ho et al.,
2013; Lau and Vaughan, 2014). Future studies should
explore the plastic changes in GABAergic and glutama-
tergic neurons that might contribute to the maintenance of
chronic pain.

The vIPAG has been shown to be instrumental in the
descending modulation of pain processing. The VIPAG is
known to form strong connections with the RVM, and the
locus coeruleus (Beitz et al., 1983; Behbehani, 1995; Antal
and Odeh, 1998; Odeh and Antal, 2001; Bowman et al.,
2013). Based on the data we present here, it will be of
great interest to determine which of these, or other, pro-
jection targets mediate the differential modulation of no-
ciception by glutamatergic and GABAergic projections
from the vIPAG.
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